Lung nodule detection using Eyrie Flock-based Deep Convolutional Neural Network

被引:0
|
作者
Gedam, Ajit Narendra [1 ]
Ajalkar, Deepika A. [2 ]
Rumale, Aniruddha S. [3 ]
机构
[1] GH Raisoni Univ, Comp Sci & Engn, Amravati 444701, Maharashtra, India
[2] Pune associated G H Raisoni Univ, Dept CSE Cyber Secur & Data Sci GHRCM, Amravati, Maharashtra, India
[3] Sandip Inst Technol & Res Ctr, Sandip Fdn, Informat Technol, Nasik, Maharashtra, India
来源
关键词
Nodule detection; optimization; deep learning; feature extraction; lung nodule segmentation; CT IMAGES; SEGMENTATION; PREDICTION;
D O I
10.3233/IDT-240605
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
PROBLEM: Lung cancer is a dangerous and deadly disease with high mortality and reduced survival rates. However, the lung nodule diagnosis performance is limited by its heterogeneity in terms of texture, shape, and intensity. Furthermore, the high degree of resemblance between the lung nodules and the tissues that surround the lung nodules makes the building of a reliable detection model more difficult. Moreover, there are several methods for diagnosing and grading lung nodules; still, the accuracy of detection with the variations in intensity is a challenging task. AIM & METHODS: For the detection of lung nodules and grading, this research proposes an Eyrie Flock Optimization-based Deep Convolutional Neural Network (Eyrie Flock-DeepCNN). The proposed Eyrie Flock Optimization integrates the fishing characteristics of Eyrie's and the flocking characteristics of Tusker to accelerate the convergence speed which inturns enhance the training process and improve the generalization performance of the DeepCNN model. In the Eyrie Flock optimization, two optimal issues are considered: (i) segmenting the lung nodule and (ii) fine-tuning hyperparameters of Deep CNN. RESULTS: The capability of the newly developed method is evaluated by the terms of Specificity, Sensitivity, and Accuracy, attaining 98.96%, 95.21%, and 94.12%, respectively. CONCLUSION: Efficiently utilized the Deep CNN along with the help of the Eyrie Flock optimization algorithm which enhances the efficiency of the classifier and convergence of the model.
引用
收藏
页码:1651 / 1673
页数:23
相关论文
共 50 条
  • [1] Lung Nodule Detection and Classification by Using Convolutional Neural Network
    Tekade, Ruchita
    Rajeswari, K.
    HELIX, 2018, 8 (05): : 3696 - 3700
  • [2] Lung nodule Detection and Classification using Deep Neural Network
    Ullah, Ibrahim
    Kuri, Saumitra Kumar
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 1062 - 1065
  • [3] Lung Nodule Detection in CT Images using Deep Convolutional Neural Networks
    Golan, Rotem
    Jacob, Christian
    Denzinger, Jorg
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 243 - 250
  • [4] Lung Nodule Detection in CT Images Using a Raw Patch-Based Convolutional Neural Network
    Qin Wang
    Fengyi Shen
    Linyao Shen
    Jia Huang
    Weiguang Sheng
    Journal of Digital Imaging, 2019, 32 : 971 - 979
  • [5] Lung Nodule Detection in CT Images Using a Raw Patch-Based Convolutional Neural Network
    Wang, Qin
    Shen, Fengyi
    Shen, Linyao
    Huang, Jia
    Sheng, Weiguang
    JOURNAL OF DIGITAL IMAGING, 2019, 32 (06) : 971 - 979
  • [6] Lung Nodule Classification Based on Deep Convolutional Neural Networks
    Mendoza Bobadilla, Julio Cesar
    Pedrini, Helio
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2016, 2017, 10125 : 117 - 124
  • [7] Lung Nodule Classification on CT Images Using Deep Convolutional Neural Network Based on Geometric Feature Extraction
    Venkatesan, Nikitha Johnsirani
    Nam, ChoonSung
    Shin, Dong Ryeol
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2020, 10 (09) : 2042 - 2052
  • [8] Pulmonary nodule detection method based on convolutional neural network
    Liu, Yiming
    Hou, Zhichao
    Li, Xiaoqin
    Wang, Xuedong
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2019, 36 (06): : 969 - 977
  • [9] Deep convolutional neural networks for multiplanar lung nodule detection: Improvement in small nodule identification
    Zheng, Sunyi
    Cornelissen, Ludo J.
    Cui, Xiaonan
    Jing, Xueping
    Veldhuis, Raymond N. J.
    Oudkerk, Matthijs
    van Ooijen, Peter M. A.
    MEDICAL PHYSICS, 2021, 48 (02) : 733 - 744
  • [10] Study on automatic detection and classification of breast nodule using deep convolutional neural network system
    Wang, Feiqian
    Liu, Xiaotong
    Yuan, Na
    Qian, Buyue
    Ruan, Litao
    Yin, Changchang
    Jin, Ciping
    JOURNAL OF THORACIC DISEASE, 2020, 12 (09) : 4690 - 4701