Integral Representation of the Mittag-Leffler Function

被引:1
|
作者
Saenko, V. V. [1 ]
机构
[1] Ulyanovsk State Univ, Ulyanovsk 432017, Russia
基金
俄罗斯基础研究基金会;
关键词
gamma function; Mittag-Leffler function; UNIFORM BRANCH; POISSON;
D O I
10.3103/S1066369X22040053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain a generalization of the integral representation of the gamma function, which shows that the Hankel contour allows the rotation in the complex plane. The range of allowable values for the rotation angle of the contour is set. Using this integral representation, we obtain a generalization of the integral representation of the Mittag-Leffler function that expresses the value of this function through the contour integral.
引用
收藏
页码:43 / 58
页数:16
相关论文
共 50 条
  • [31] Comments on the properties of Mittag-Leffler function
    Dattoli, G.
    Gorska, K.
    Horzela, A.
    Licciardi, S.
    Pidatella, R. M.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (16-18): : 3427 - 3443
  • [32] Pathway fractional integral formula involving an extended Mittag-Leffler function
    Khan, Adnan
    Akhtar, Hafiz Muhammad
    Nisar, K. S.
    Suthar, D. L.
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2022, 42 (03): : 141 - 147
  • [33] Properties of the Mittag-Leffler relaxation function
    Berberan-Santos, MN
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 38 (04) : 629 - 635
  • [34] On Generalized Matrix Mittag-Leffler Function
    Batiha, Iqbal M.
    Jebril, Iqbal H.
    Alshorm, Shameseddin
    Anakira, Nidal
    Alkhazaleh, Shawkat
    IAENG International Journal of Applied Mathematics, 2024, 54 (03) : 576 - 580
  • [35] Singular integral equation involving a multivariable analog of Mittag-Leffler function
    Gaboury, Sebastien
    Ozarslan, Mehmet Ali
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [36] Singular integral equation involving a multivariable analog of Mittag-Leffler function
    Sebastien Gaboury
    Mehmet Ali Özarslan
    Advances in Difference Equations, 2014
  • [37] On generalized fractional integral with multivariate Mittag-Leffler function and its applications
    Nazir, Amna
    Rahman, Gauhar
    Ali, Asad
    Naheed, Saima
    Nisar, Kottakkaran Soopy
    Albalawi, Wedad
    Zahran, Heba Y.
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (11) : 9187 - 9201
  • [38] A FURTHER EXTENSION OF MITTAG-LEFFLER FUNCTION
    Andric, Maja
    Farid, Ghulam
    Pecaric, Josip
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (05) : 1377 - 1395
  • [39] A NEW EXTENSION OF THE MITTAG-LEFFLER FUNCTION
    Arshad, Muhammad
    Choi, Junesang
    Mubeen, Shahid
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (02): : 549 - 560
  • [40] A monotonicity property of the Mittag-Leffler function
    Alzer, Horst
    Kwong, Man Kam
    ACTA SCIENTIARUM MATHEMATICARUM, 2019, 85 (1-2): : 181 - 187