Integral Representation of the Mittag-Leffler Function

被引:1
|
作者
Saenko, V. V. [1 ]
机构
[1] Ulyanovsk State Univ, Ulyanovsk 432017, Russia
基金
俄罗斯基础研究基金会;
关键词
gamma function; Mittag-Leffler function; UNIFORM BRANCH; POISSON;
D O I
10.3103/S1066369X22040053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain a generalization of the integral representation of the gamma function, which shows that the Hankel contour allows the rotation in the complex plane. The range of allowable values for the rotation angle of the contour is set. Using this integral representation, we obtain a generalization of the integral representation of the Mittag-Leffler function that expresses the value of this function through the contour integral.
引用
收藏
页码:43 / 58
页数:16
相关论文
共 50 条
  • [21] Inversion of integral transform with an extended generalized Mittag-Leffler function
    A. A. Kilbas
    A. A. Koroleva
    Doklady Mathematics, 2006, 74 : 805 - 808
  • [22] BOUNDS OF FRACTIONAL INTEGRAL OPERATORS CONTAINING MITTAG-LEFFLER FUNCTION
    Farid, Ghulam
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2019, 81 (04): : 133 - 142
  • [23] Inversion of integral transform with an extended generalized Mittag-Leffler function
    Kilbas, A. A.
    Koroleva, A. A.
    DOKLADY MATHEMATICS, 2006, 74 (03) : 805 - 808
  • [24] Multivariate Mittag-Leffler function and related fractional integral operators
    Rahman, Gauhar
    Samraiz, Muhammad
    Alqudah, Manar A.
    Abdeljawad, Thabet
    AIMS MATHEMATICS, 2022, 8 (06): : 13276 - 13293
  • [25] Asymptotic Expansion of the Modified Exponential Integral Involving the Mittag-Leffler Function
    Paris, Richard
    MATHEMATICS, 2020, 8 (03)
  • [26] EXTENDED GENERALIZED MITTAG-LEFFLER FUNCTION APPLIED ON FRACTIONAL INTEGRAL INEQUALITIES
    Andric, Maja
    Farid, Ghulam
    Pecaric, Josip
    Siddique, Muhammad Usama
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (04): : 1171 - 1184
  • [27] Exponential asymptotics of the Mittag-Leffler function
    Wong, R
    Zhao, YQ
    CONSTRUCTIVE APPROXIMATION, 2002, 18 (03) : 355 - 385
  • [28] Laplace transform and the Mittag-Leffler function
    Teodoro, G. Sales
    de Oliveira, E. Capelas
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2014, 45 (04) : 595 - 604
  • [29] On the numerical computation of the Mittag-Leffler function
    Valerio, Duarte
    Machado, Jose Tenreiro
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (10) : 3419 - 3424
  • [30] The Integral Mittag-Leffler, Whittaker and Wright Functions
    Apelblat, Alexander
    Gonzalez-Santander, Juan Luis
    MATHEMATICS, 2021, 9 (24)