On random Schrodinger operators on Z2

被引:0
|
作者
Bourgain, J
机构
[1] Inst Adv Study, Princeton, NJ 08540 USA
[2] Univ Illinois, Urbana, IL 61801 USA
关键词
'random potential; ac spectrum;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with random lattice operators on Z(2) of the form H-w = Delta + V-w where Delta is the lattice Laplacian and V-w a random potential V-w(n) = w(n)v(n),{w(n)} independent Bernoulli or Gaussian variables and {v(n)} satisfying the condition sup(n) \v(n)\ \n\(rho) < infinity for some rho > 1/2. In this setting and restricting 2 the spectrum away from the edges and 0, existence and completeness of the wave operators is shown. This leads to statements on the a.c. spectrum of H-w. It should be pointed out that, although we do consider here only a specific (and classical) model, the core of our analysis does apply in greater generality.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [41] A quenched limit theorem for the local time of random walks on Z2
    Gaertner, Juergen
    Sun, Rongfeng
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (04) : 1198 - 1215
  • [42] AGT/Z2
    Le Floch, Bruno
    Turiaci, Gustavo J.
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (12):
  • [43] N-Wave Equations with Orthogonal Algebras: Z2 and Z2 x Z2 Reductions and Soliton Solutions
    Gerdjikov, Vladimir S.
    Kostov, Nikolay A.
    Valchev, Tihomir I.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
  • [44] An action of the free product Z2 * Z2 * Z2 on the q-Onsager algebra and its current algebra
    Terwilliger, Paul
    NUCLEAR PHYSICS B, 2018, 936 : 306 - 319
  • [45] Simple random walk on Z2 perturbed on the axes (renewal case)
    Andreoletti, Pierre
    Debs, Pierre
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [46] POSITION OF RANDOM-WALK ON Z2 AT MOMENT OF REACHING A LAW
    BOUGEROL, P
    KIPNIS, C
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 52 (02): : 183 - 191
  • [47] A special set of exceptional times for dynamical random walk on Z2
    Amir, Gideon
    Hoffman, Christopher
    ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 : 1927 - 1951
  • [48] Infinite Paths on a Random Environment of Z2 with Bounded and Recurrent Sums
    De Santis, Emilio
    Piccioni, Mauro
    JOURNAL OF STATISTICAL PHYSICS, 2019, 176 (05) : 1088 - 1114
  • [49] (|z1±z2|)2=(|z1|)2+(|z2|)2±2×|z1|×|z2|×cos(θ1-θ2)的应用
    胡晓苹
    中学数学, 1993, (04) : 19 - 22
  • [50] The infection of the Z2°
    Altmann, Klaus
    ELEMENTE DER MATHEMATIK, 2022, 78 (04) : 155 - 167