AGT/Z2

被引:14
|
作者
Le Floch, Bruno [1 ]
Turiaci, Gustavo J. [2 ]
机构
[1] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
来源
关键词
Conformal and W Symmetry; Supersymmetric Gauge Theory; Supersymmetry and Duality; Duality in Gauge Field Theories; N=2 GAUGE-THEORIES; BOUNDARY-CONDITIONS; FIELD-THEORY; ELLIPTIC GENERA; FUSION RULES;
D O I
10.1007/JHEP12(2017)099
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We relate Liouville/Toda CFT correlators on Riemann surfaces with boundaries and cross-cap states to supersymmetric observables in four-dimensional N = 2 gauge theories. Our construction naturally involves four-dimensional theories with fields de fined on different Z(2) quotients of the sphere (hemisphere and projective space) but nevertheless interacting with each other. The six-dimensional origin is a Z(2) quotient of the setup giving rise to the usual AGT correspondence. To test the correspondence, we work out the RP4 partition function of four-dimensional N = 2 theories by combining a 3d lens space and a 4d hemisphere partition functions. The same technique reproduces known RP2 partition functions in a form that lets us easily check two-dimensional Seiberg-like dualities on this nonorientable space. As a bonus we work out boundary and cross-cap wavefunctions in Toda CFT.
引用
收藏
页数:54
相关论文
共 50 条
  • [1] A SUBALGEBRA OF EXTA'' (Z2,Z2)
    ZACHARIOU, A
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (05) : 647 - +
  • [2] A Z2 x Z2 standard model
    Blaszczyk, Michael
    Nibbelink, Stefan Groot
    Ratz, Michael
    Ruehle, Fabian
    Trapletti, Michele
    Vaudrevange, Patrick K. S.
    PHYSICS LETTERS B, 2010, 683 (4-5) : 340 - 348
  • [3] AN INFINITE SUBALGEBRA OF EXTA(Z2 Z2
    MAHOWALD, M
    TANGORA, M
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 132 (01) : 263 - &
  • [4] F(Z,1 ,Z2 ) plus A(Z1 ,Z2 )G(Z1 ,Z2 ) equals H(Z1 ,Z2 )..
    Lai, Yhean-Sen
    IEEE transactions on circuits and systems, 1986, CAS-33 (05): : 542 - 544
  • [5] Z2[u]Z2[u]-Additive codes
    Shashirekha, G.
    Bhatta, G. R. Vadiraja
    Poojary, Prasanna
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (08)
  • [6] Designing Z2 and Z2 x Z2 topological orders in networks of Majorana bound states
    Mohammadi, Fatemeh
    Kargarian, Mehdi
    PHYSICAL REVIEW B, 2022, 105 (16)
  • [7] |Z|2=Z2吗?
    邱应麟
    中学数学, 1982, (01) : 34 - 34
  • [8] THE SOLUTION OF THE TWO-DIMENSIONAL POLYNOMIAL EQUATION B(Z1,Z2)F(Z1,Z2)+A(Z1,Z2)G(Z1,Z2)=H(Z1,Z2)
    LAI, YS
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (05): : 542 - 544
  • [9] Applications of Z2 Z2 [ u ] Z2 [ uk ]- additive cyclic codes in the construction of optimal codes
    Ashraf, Mohammad
    Asim, Mohd
    Mohammad, Ghulam
    Rehman, Washiqur
    Guenda, Kenza
    FILOMAT, 2024, 38 (17) : 6271 - 6290
  • [10] REPRESENTATIONS OF Z2 X Z2 GROUP IN FIELD OF CHARACTERISTIC 2
    BASHEV, VA
    DOKLADY AKADEMII NAUK SSSR, 1961, 141 (05): : 1015 - &