The Density-Based Agglomerative Information Bottleneck

被引:0
|
作者
Ren, Yongli [1 ]
Ye, Yangdong [1 ]
Li, Gang [2 ]
机构
[1] Zhengzhou Univ, Sch Informat Engn, Zhengzhou, Peoples R China
[2] Deakin Univ, Sch Engn & Informat, Burwood, Vic 3125, Australia
基金
美国国家科学基金会;
关键词
Information Bottleneck; density; hierarchical tree-structure;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Information Bottleneck method aims to extract a compact representation which preserves the maximum relevant information. The sub-optimality in agglomerative Information Bottleneck (aIB) algorithm restricts the applications of Information Bottleneck method. In this paper, the concept of density-based chains is adopted to evaluate the information loss among the neighbors of all element, rather than the information loss between pairs of elements. The DaIB algorithm is then presented to alleviate the sub-optimality problem in aIB while simultaneously keeping the useful hierarchical clustering tree-structure. The experiment results on the benchmark data sets show that the DaIB algorithm can get more relevant information and higher precision than aIB algorithm, and the paired t-test indicates that these improvements are statistically significant.
引用
收藏
页码:333 / +
页数:2
相关论文
共 50 条
  • [41] Fast density-based clustering algorithm
    Zhou, Shuigeng
    Zhou, Aoying
    Cao, Jing
    Hu, Yunfa
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2000, 37 (11): : 1287 - 1292
  • [42] MINIMUM DISTANCE DENSITY-BASED ESTIMATION
    CAO, R
    CUEVAS, A
    FRAIMAN, R
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1995, 20 (06) : 611 - 631
  • [43] Density-based spatial keyword querying
    Zhang, Li
    Sun, Xiaoping
    Zhuge, Hai
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2014, 32 : 211 - 221
  • [44] The Framework of Relative Density-Based Clustering
    Cui, Zelin
    Shen, Hong
    PARALLEL ARCHITECTURE, ALGORITHM AND PROGRAMMING, PAAP 2017, 2017, 729 : 343 - 352
  • [45] A new density-based sampling algorithm
    Ros, Frederic
    Guillaume, Serge
    PROCEEDINGS OF THE 2015 CONFERENCE OF THE INTERNATIONAL FUZZY SYSTEMS ASSOCIATION AND THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY, 2015, 89 : 145 - 151
  • [46] Density-based multiscale data condensation
    Mitra, P
    Murthy, CA
    Pal, SK
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (06) : 734 - 747
  • [47] Density-based weighting for imbalanced regression
    Steininger, Michael
    Kobs, Konstantin
    Davidson, Padraig
    Krause, Anna
    Hotho, Andreas
    MACHINE LEARNING, 2021, 110 (08) : 2187 - 2211
  • [48] Density-based clustering with differential privacy
    Wu, Fuyu
    Du, Mingjing
    Zhi, Qiang
    INFORMATION SCIENCES, 2024, 681
  • [49] An adaptive semi-supervised clustering approach via multiple density-based information
    Yang, Yun
    Li, Zongze
    Wang, Wei
    Tao, Dapeng
    NEUROCOMPUTING, 2017, 257 : 193 - 205
  • [50] DBHD: Density-based clustering for highly varying density
    Durani, Walid
    Mautz, Dominik
    Plant, Claudia
    Boehm, Christian
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 921 - 926