The Density-Based Agglomerative Information Bottleneck

被引:0
|
作者
Ren, Yongli [1 ]
Ye, Yangdong [1 ]
Li, Gang [2 ]
机构
[1] Zhengzhou Univ, Sch Informat Engn, Zhengzhou, Peoples R China
[2] Deakin Univ, Sch Engn & Informat, Burwood, Vic 3125, Australia
基金
美国国家科学基金会;
关键词
Information Bottleneck; density; hierarchical tree-structure;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Information Bottleneck method aims to extract a compact representation which preserves the maximum relevant information. The sub-optimality in agglomerative Information Bottleneck (aIB) algorithm restricts the applications of Information Bottleneck method. In this paper, the concept of density-based chains is adopted to evaluate the information loss among the neighbors of all element, rather than the information loss between pairs of elements. The DaIB algorithm is then presented to alleviate the sub-optimality problem in aIB while simultaneously keeping the useful hierarchical clustering tree-structure. The experiment results on the benchmark data sets show that the DaIB algorithm can get more relevant information and higher precision than aIB algorithm, and the paired t-test indicates that these improvements are statistically significant.
引用
收藏
页码:333 / +
页数:2
相关论文
共 50 条
  • [21] Density-based view materialization
    Das, A
    Bhattacharyya, DK
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2005, 3776 : 589 - 594
  • [22] Density-based spam detector
    Yoshida, K
    Adachi, F
    Washio, T
    Motoda, H
    Homma, T
    Nakashima, A
    Fujikawa, H
    Yamazaki, K
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2004, E87D (12): : 2678 - 2688
  • [23] Density-Based Clustering with Constraints
    Lasek, Piotr
    Gryz, Jarek
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2019, 16 (02) : 469 - 489
  • [24] Density-Based Clustering of Polygons
    Joshi, Deepti
    Samal, Ashok K.
    Soh, Leen-Kiat
    2009 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, 2009, : 171 - 178
  • [25] Directional density-based clustering
    Saavedra-Nieves, Paula
    Fernandez-Perez, Martin
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024,
  • [26] Active Density-Based Clustering
    Mai, Son T.
    He, Xiao
    Hubig, Nina
    Plant, Claudia
    Boehm, Christian
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2013, : 508 - 517
  • [27] Density-based label placement
    Antoine Lhuillier
    Mereke van Garderen
    Daniel Weiskopf
    The Visual Computer, 2019, 35 : 1041 - 1052
  • [28] A DENSITY-BASED GREEDY ROUTER
    HO, TT
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1993, 12 (07) : 974 - 981
  • [29] Density-based modelling of dislocations
    El-Azab, Anter
    Zaiser, Michael
    Busso, Esteban P.
    PHILOSOPHICAL MAGAZINE, 2007, 87 (8-9) : 1159 - 1160
  • [30] Density-Based Logistic Regression
    Chen, Wenlin
    Chen, Yixin
    Mao, Yi
    Guo, Baolong
    19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), 2013, : 140 - 148