The Density-Based Agglomerative Information Bottleneck

被引:0
|
作者
Ren, Yongli [1 ]
Ye, Yangdong [1 ]
Li, Gang [2 ]
机构
[1] Zhengzhou Univ, Sch Informat Engn, Zhengzhou, Peoples R China
[2] Deakin Univ, Sch Engn & Informat, Burwood, Vic 3125, Australia
基金
美国国家科学基金会;
关键词
Information Bottleneck; density; hierarchical tree-structure;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Information Bottleneck method aims to extract a compact representation which preserves the maximum relevant information. The sub-optimality in agglomerative Information Bottleneck (aIB) algorithm restricts the applications of Information Bottleneck method. In this paper, the concept of density-based chains is adopted to evaluate the information loss among the neighbors of all element, rather than the information loss between pairs of elements. The DaIB algorithm is then presented to alleviate the sub-optimality problem in aIB while simultaneously keeping the useful hierarchical clustering tree-structure. The experiment results on the benchmark data sets show that the DaIB algorithm can get more relevant information and higher precision than aIB algorithm, and the paired t-test indicates that these improvements are statistically significant.
引用
收藏
页码:333 / +
页数:2
相关论文
共 50 条
  • [1] Agglomerative information bottleneck
    Slonim, N
    Tishby, N
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12, 2000, 12 : 617 - 623
  • [2] TOBAE: A Density-based Agglomerative Clustering Algorithm
    Shehzad Khalid
    Shahid Razzaq
    Journal of Classification, 2015, 32 : 241 - 267
  • [3] TOBAE: A Density-based Agglomerative Clustering Algorithm
    Khalid, Shehzad
    Razzaq, Shahid
    JOURNAL OF CLASSIFICATION, 2015, 32 (02) : 241 - 267
  • [4] Agglomerative multivariate information bottleneck
    Slonim, N
    Friedman, N
    Tishby, N
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 929 - 936
  • [5] Audio Events Clustering Based on Agglomerative Information Bottleneck
    Li Y.-X.
    Wang Q.
    Zhang X.
    Zou L.
    Li, Yan-Xiong (eeyxli@scut.edu.cn), 1600, Chinese Institute of Electronics (45): : 1064 - 1071
  • [6] Fast Agglomerative Information Bottleneck Based Trajectory Clustering
    Guo, Yuejun
    Xu, Qing
    Fan, Yang
    Liang, Sheng
    Sbert, Mateu
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT III, 2016, 9949 : 425 - 433
  • [7] Visualization on Agglomerative Information Bottleneck Based Trajectory Clustering
    Fan, Yang
    Xu, Qing
    Guo, Yuejun
    Liang, Sheng
    2015 19TH INTERNATIONAL CONFERENCE ON INFORMATION VISUALISATION IV 2015, 2015, : 557 - 560
  • [8] Agglomerative Information Bottleneck for speaker diarization of meetings data
    Vijayasenan, Deepu
    Valente, Fabio
    Bourlard, Herve
    2007 IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING, VOLS 1 AND 2, 2007, : 250 - 255
  • [9] A Density Peak Clustering Algorithm Based on Information Bottleneck
    Liu, Yongli
    Zhao, Congcong
    Chao, Hao
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2023, 19 (06): : 778 - 790
  • [10] Density-based clustering with side information and active learning
    Viet-Vu Vu
    Hong-Quan Do
    2017 9TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE 2017), 2017, : 166 - 171