Electrochemical Atomic Layer Deposition (E-ALD) of Pt Nanofilms Using SLRR Cycles

被引:36
|
作者
Jayaraju, Nagarajan [1 ]
Vairavapandian, Deepa [1 ]
Kim, Youn Guen [1 ]
Banga, Dhego [1 ]
Stickney, John L. [1 ]
机构
[1] Univ Georgia, Dept Chem, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
LIMITED REDOX REPLACEMENT; SCANNING-TUNNELING-MICROSCOPY; ENERGY ELECTRON-DIFFRACTION; CHEMICAL-VAPOR-DEPOSITION; IN-SITU STM; THIN-FILMS; UNDERPOTENTIAL DEPOSITION; EPITAXIAL-GROWTH; PLATINUM NANOPARTICLES; SURFACE;
D O I
10.1149/2.053210jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This paper describes platinum nanofilm formation via the electrochemical form of atomic layer deposition (E-ALD), where the E-ALD cycles are based on surface limited redox replacement (SLRR) reaction. SLRR is where an atomic layer (AL) of a reactive (sacrificial) metal is exchanged for a more noble metal. In the present study both Cu and Pb AL were investigated as sacrificial atomic layers for replacement with both Pt(II) and Pt(IV) precursors. 25 E-ALD cycles were used to form Pt nanofilm deposits. Initial deposits contained an order of magnitude more Pt than expected, evidenced by a factor of 7 increase in surface roughness. Overly positive potentials achieved during the exchange promoted excess deposition and surface roughening. It is proposed that anionic Pt precursors adsorbed more strongly at high potentials, making them difficult to rinse from the cell. Those remaining adsorbed Pt anions are then reduced to Pt-o when the potential was shifted negative for deposition of the sacrificial element. The result was Pt-o formation at a large overpotential, which, contributed to excessive Pt deposits and roughening. Increased rinsing of the anionic Pt precursors from the cell eliminated the excess Pt deposition and roughening, resulting in the expected layer by layer growth of an ALD process. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.053210jes] All rights reserved.
引用
收藏
页码:D616 / D622
页数:7
相关论文
共 50 条
  • [31] ATOMIC LAYER DEPOSITION (ALD) TUNGSTEN NANOELECTROMECHANICAL TRANSISTORS
    Davidson, B. D.
    George, S. M.
    Bright, V. M.
    MEMS 2010: 23RD IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 2010, : 424 - 427
  • [32] Electrochemical Atomic Layer Deposition
    Stickney, John L.
    ELECTROCHEMICAL SOCIETY INTERFACE, 2011, 20 (02): : 28 - 30
  • [33] Formation and characterization of Sb2Te3 nanofilms on Pt by electrochemical atomic layer epitaxy
    Yang, JY
    Zhu, W
    Gao, XH
    Bao, SQ
    Fan, M
    Duan, XK
    Hou, J
    JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (10): : 4599 - 4604
  • [34] Chiral templating of alumina nanofilms by the atomic layer deposition process
    Shalev, O. L.
    Carmiel, Y.
    Gottesman, R.
    Tirosh, S.
    Mastai, Y.
    CHEMICAL COMMUNICATIONS, 2016, 52 (81) : 12072 - 12075
  • [35] Electroformation of Pd-modified Thin Film Electrocatalysts Using E-ALD Technique
    Mkhohlakali, A. C.
    Fuku, X.
    Modibedi, R. M.
    Khotseng, L. E.
    Mathe, M. K.
    ELECTROANALYSIS, 2021, 33 (07) : 1746 - 1760
  • [36] Electron Enhanced Atomic Layer Deposition (EE-ALD)
    George, Steven M.
    2019 INTERNATIONAL SYMPOSIUM ON VLSI TECHNOLOGY, SYSTEMS AND APPLICATION (VLSI-TSA), 2019,
  • [37] USING ATOMIC LAYER DEPOSITION (ALD) IN NANO-ELECTRONIC DEVICES, SENSORS AND SYSTEMS
    Reader, Alec
    ELECTRONICS WORLD, 2009, 115 (1878): : 10 - +
  • [38] Atomic layer deposition (ALD) as a coating tool for reinforcing fibers
    A. K. Roy
    W. Baumann
    I. König
    G. Baumann
    S. Schulze
    M. Hietschold
    T. Mäder
    D. J. Nestler
    B. Wielage
    W. A. Goedel
    Analytical and Bioanalytical Chemistry, 2010, 396 : 1913 - 1919
  • [39] Surface chemistry of metal atomic layer deposition (ALD) precursors
    Zaera, Francisco
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [40] Atomic layer deposition (ALD) technology for reliable RF MEMS
    Hoivik, N
    Elam, JW
    George, SM
    Gupta, KC
    Bright, VM
    Lee, YC
    2002 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-3, 2002, : 1229 - 1232