The Fractional Hilbert Transform of Generalized Functions

被引:0
|
作者
Abdullah, Naheed [1 ,2 ]
Iqbal, Saleem [2 ]
机构
[1] Govt Girls PostGrad Coll, Dept Math, Quetta 08734, Pakistan
[2] Univ Balochistan, Dept Math, Quetta 87550, Pakistan
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 10期
关键词
convolution; Boehmian; fractional Hilbert transform; Hilbert transform; equivalence class; delta sequences; compact support;
D O I
10.3390/sym14102096
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The fractional Hilbert transform, a generalization of the Hilbert transform, has been extensively studied in the literature because of its widespread application in optics, engineering, and signal processing. In the present work, we expand the fractional Hilbert transform that displays an odd symmetry to a space of generalized functions known as Boehmians. Moreover, we introduce a new fractional convolutional operator for the fractional Hilbert transform to prove a convolutional theorem similar to the classical Hilbert transform, and also to extend the fractional Hilbert transform to Boehmians. We also produce a suitable Boehmian space on which the fractional Hilbert transform exists. Further, we investigate the convergence of the fractional Hilbert transform for the class of Boehmians and discuss the continuity of the extended fractional Hilbert transform.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Analysis of Dirichlet and Generalized "Hamming" window functions in the fractional Fourier transform domains
    Kumar, Sanjay
    Singh, Kulbir
    Saxena, Rajiv
    SIGNAL PROCESSING, 2011, 91 (03) : 600 - 606
  • [32] Certain Integral Transform and Fractional Integral Formulas for the Generalized Gauss Hypergeometric Functions
    Choi, Junesang
    Agarwal, Praveen
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [33] Fractional hilbert transform and isotropic Hilbert Transform for two dimensional objects:: Numerical simulation.
    Torres, M
    Tepichín, E
    Lohmann, AW
    Sánchez, D
    Ramírez, G
    18TH CONGRESS OF THE INTERNATIONAL COMMISSION FOR OPTICS: OPTICS FOR THE NEXT MILLENNIUM, TECHNICAL DIGEST, 1999, 3749 : 42 - 43
  • [34] Generalized Laplace transform of generalized functions
    Mahato, A.K.
    Saksena, K.M.
    Analysis Mathematica, 1992, 18 (02)
  • [35] Generalized uncertainty principles associated with Hilbert transform
    Xu Guanlei
    Wang Xiaotong
    Wang Longtao
    Liu Bo
    Su Shipeng
    Xu Xiaogang
    Signal, Image and Video Processing, 2014, 8 : 279 - 285
  • [36] Generalized Hilbert transform seismic edge detection
    Li, Hongxing
    Rao, Shuo
    Tao, Chunhui
    Zhou, Jianping
    Zhang, Hua
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2015, 50 (03): : 490 - 494
  • [37] Generalized uncertainty principles associated with Hilbert transform
    Xu Guanlei
    Wang Xiaotong
    Wang Longtao
    Liu Bo
    Su Shipeng
    Xu Xiaogang
    SIGNAL IMAGE AND VIDEO PROCESSING, 2014, 8 (02) : 279 - 285
  • [38] Invisibility on demand based on a generalized Hilbert transform
    Hayran, Zeki
    Herrero, Ramon
    Botey, Muriel
    Kurt, Hamza
    Staliunas, Kestutis
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [40] Multidimensional fractional Fourier transform and generalized fractional convolution
    Kamalakkannan, R.
    Roopkumar, R.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2020, 31 (02) : 152 - 165