The Fractional Hilbert Transform of Generalized Functions

被引:0
|
作者
Abdullah, Naheed [1 ,2 ]
Iqbal, Saleem [2 ]
机构
[1] Govt Girls PostGrad Coll, Dept Math, Quetta 08734, Pakistan
[2] Univ Balochistan, Dept Math, Quetta 87550, Pakistan
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 10期
关键词
convolution; Boehmian; fractional Hilbert transform; Hilbert transform; equivalence class; delta sequences; compact support;
D O I
10.3390/sym14102096
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The fractional Hilbert transform, a generalization of the Hilbert transform, has been extensively studied in the literature because of its widespread application in optics, engineering, and signal processing. In the present work, we expand the fractional Hilbert transform that displays an odd symmetry to a space of generalized functions known as Boehmians. Moreover, we introduce a new fractional convolutional operator for the fractional Hilbert transform to prove a convolutional theorem similar to the classical Hilbert transform, and also to extend the fractional Hilbert transform to Boehmians. We also produce a suitable Boehmian space on which the fractional Hilbert transform exists. Further, we investigate the convergence of the fractional Hilbert transform for the class of Boehmians and discuss the continuity of the extended fractional Hilbert transform.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] The Fractional Hilbert Transform on the Real Line
    Abdullah, Naheed
    Iqbal, Saleem
    Khalid, Asma
    Al Johani, Amnah S.
    Khan, Ilyas
    Rehman, Abdul
    Andualem, Mulugeta
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [23] INVERSION THEOREM FOR GENERALIZED HILBERT TRANSFORM
    DETTMAN, JW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A142 - A142
  • [24] A generalized Kolmogorov inequality for the Hilbert transform
    Pinsky, MA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (03) : 753 - 758
  • [25] THE HILBERT PROBLEM FOR GENERALIZED FUNCTIONS
    LAUWERIER, HA
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1963, 13 (02) : 157 - 166
  • [26] THE GENERALIZED FRACTIONAL FOURIER TRANSFORM
    Pei, Soo-Chang
    Liu, Chun-Lin
    Lai, Yun-Chiu
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 3705 - 3708
  • [27] Revisiting the hilbert transform of periodic functions
    René E. Castillo
    Edixon M. Rojas
    Mathematische Semesterberichte, 2025, 72 (1) : 29 - 49
  • [28] Fuzzy Hilbert Transform of Fuzzy Functions
    Yan, Zhibo
    MATHEMATICS, 2025, 13 (02)
  • [29] The Graph Fractional Fourier Transform in Hilbert Space
    Zhang, Yu
    Li, Bing-Zhao
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2025, 11 : 242 - 257
  • [30] A multilinear generalisation of the Hilbert transform and fractional integration
    Valdimarsson, Stefan Ingi
    REVISTA MATEMATICA IBEROAMERICANA, 2012, 28 (01) : 25 - 55