Fluctuations of interacting Markov chain Monte Carlo methods

被引:3
|
作者
Bercu, Bernard [2 ,3 ]
Del Moral, Pierre [2 ,3 ,4 ]
Doucet, Arnaud [1 ]
机构
[1] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
[2] Univ Bordeaux, Ctr INRIA Bordeaux Sud Ouest, F-33405 Talence, France
[3] Univ Bordeaux, Inst Math Bordeaux, F-33405 Talence, France
[4] Ctr Appl Math, F-9112 Palaiseau, France
关键词
Multivariate central limit theorems; Random fields; Martingale limit theorems; Self-interacting Markov chains; Markov chain Monte Carlo algorithms; ERGODICITY;
D O I
10.1016/j.spa.2012.01.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a multivariate central limit theorem for a general class of interacting Markov chain Monte Carlo algorithms used to solve nonlinear measure-valued equations. These algorithms generate stochastic processes which belong to the class of nonlinear Markov chains interacting with their empirical occupation measures. We develop an original theoretical analysis based on resolvent operators and semigroup techniques to analyze the fluctuations of their occupation measures around their limiting values. (c) 2012 Elsevier By. All rights reserved.
引用
收藏
页码:1304 / 1331
页数:28
相关论文
共 50 条
  • [41] Markov chain Monte Carlo methods with applications to signal processing
    Fitzgerald, WJ
    SIGNAL PROCESSING, 2001, 81 (01) : 3 - 18
  • [42] Stopping Tests for Markov Chain Monte-Carlo Methods
    B. Ycart
    Methodology And Computing In Applied Probability, 2000, 2 (1) : 23 - 36
  • [43] ROBUST MULTIPLE OBJECT TRACKING BY DETECTION WITH INTERACTING MARKOV CHAIN MONTE CARLO
    Santhoshkumar, S.
    Karthikeyan, S.
    Manjunath, B. S.
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 2953 - 2957
  • [44] Sampling from complicated and unknown distributions Monte Carlo and Markov Chain Monte Carlo methods for redistricting
    Cho, Wendy K. Tam
    Liu, Yan Y.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 506 : 170 - 178
  • [45] Markov Chain Monte Carlo Combined with Deterministic Methods for Markov Random Field Optimization
    Kim, Wonsik
    Lee, Kyoung Mu
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 1406 - 1413
  • [46] Population Markov Chain Monte Carlo
    Laskey, KB
    Myers, JW
    MACHINE LEARNING, 2003, 50 (1-2) : 175 - 196
  • [47] Computational complexity of Markov chain Monte Carlo methods for finite Markov random fields
    Frigessi, A
    Martinelli, F
    Stander, J
    BIOMETRIKA, 1997, 84 (01) : 1 - 18
  • [48] Monte Carlo integration with Markov chain
    Tan, Zhiqiang
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (07) : 1967 - 1980
  • [49] Population Markov Chain Monte Carlo
    Kathryn Blackmond Laskey
    James W. Myers
    Machine Learning, 2003, 50 : 175 - 196
  • [50] Evolutionary Markov chain Monte Carlo
    Drugan, MM
    Thierens, D
    ARTIFICIAL EVOLUTION, 2004, 2936 : 63 - 76