Fluctuations of interacting Markov chain Monte Carlo methods

被引:3
|
作者
Bercu, Bernard [2 ,3 ]
Del Moral, Pierre [2 ,3 ,4 ]
Doucet, Arnaud [1 ]
机构
[1] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
[2] Univ Bordeaux, Ctr INRIA Bordeaux Sud Ouest, F-33405 Talence, France
[3] Univ Bordeaux, Inst Math Bordeaux, F-33405 Talence, France
[4] Ctr Appl Math, F-9112 Palaiseau, France
关键词
Multivariate central limit theorems; Random fields; Martingale limit theorems; Self-interacting Markov chains; Markov chain Monte Carlo algorithms; ERGODICITY;
D O I
10.1016/j.spa.2012.01.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a multivariate central limit theorem for a general class of interacting Markov chain Monte Carlo algorithms used to solve nonlinear measure-valued equations. These algorithms generate stochastic processes which belong to the class of nonlinear Markov chains interacting with their empirical occupation measures. We develop an original theoretical analysis based on resolvent operators and semigroup techniques to analyze the fluctuations of their occupation measures around their limiting values. (c) 2012 Elsevier By. All rights reserved.
引用
收藏
页码:1304 / 1331
页数:28
相关论文
共 50 条