CartograTree: connecting tree genomes, phenotypes and environment

被引:4
|
作者
Vasquez-Gross, Hans A. [1 ]
Yu, John J. [1 ]
Figueroa, Ben [1 ]
Gessler, Damian D. G. [2 ]
Neale, David B. [1 ]
Wegrzyn, Jill L. [1 ]
机构
[1] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA
[2] Univ Arizona, IPlant Collaborat, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
association study; forest trees; genotype; landscape genomics; phenotype; web services; PINUS-TAEDA L; CLIMATE-CHANGE; SEMANTIC WEB; POPULATION; SOFTWARE; ONTOLOGY; SERVICES; DATABASE; BIOLOGY; TOOL;
D O I
10.1111/1755-0998.12067
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Today, researchers spend a tremendous amount of time gathering, formatting, filtering and visualizing data collected from disparate sources. Under the umbrella of forest tree biology, we seek to provide a platform and leverage modern technologies to connect biotic and abiotic data. Our goal is to provide an integrated web-based workspace that connects environmental, genomic and phenotypic data via geo-referenced coordinates. Here, we connect the genomic query web-based workspace, DiversiTree and a novel geographical interface called CartograTree to data housed on the TreeGenes database. To accomplish this goal, we implemented Simple Semantic Web Architecture and Protocol to enable the primary genomics database, TreeGenes, to communicate with semantic web services regardless of platform or back-end technologies. The novelty of CartograTree lies in the interactive workspace that allows for geographical visualization and engagement of high performance computing (HPC) resources. The application provides a unique tool set to facilitate research on the ecology, physiology and evolution of forest tree species. CartograTree can be accessed at: http://dendrome.ucdavis.edu/cartogratree.
引用
收藏
页码:528 / 537
页数:10
相关论文
共 50 条
  • [41] CRISPR-Enabled Tools for Engineering Microbial Genomes and Phenotypes
    Tarasava, Katia
    Oh, Eun Joong
    Eckert, Carrie A.
    Gill, Ryan T.
    BIOTECHNOLOGY JOURNAL, 2018, 13 (09)
  • [42] An example of an infinite Steiner tree connecting an uncountable set
    Paolini, Emanuele
    Stepanov, Eugene
    Teplitskaya, Yana
    ADVANCES IN CALCULUS OF VARIATIONS, 2015, 8 (03) : 267 - 290
  • [43] Maintenance of biodiversity of apricot tree phenotypes in Romania
    Balan, V.
    Tudor, V.
    Petrisor, C.
    Oprea, M.
    Drosu, S.
    Chireccanu, C.
    PROCEEDINGS OF THE XIITH ISHS SYMPOSIUM ON APRICOT CULTURE AND DECLINE, VOLS 1 AND 2, 2006, (701): : 199 - +
  • [44] NSAIDs hypersensitivity: Clinical phenotypes and decision tree
    Pontac, M.
    Bourrier, T.
    Le Heron, C.
    Rocher, F.
    Marquette, C. -H.
    Leroy, S.
    REVUE FRANCAISE D ALLERGOLOGIE, 2015, 55 (06): : 392 - 400
  • [45] Maternal effects on tree phenotypes: considering the microbiome
    Vivas, Maria
    Kemler, Martin
    Slippers, Bernard
    TRENDS IN PLANT SCIENCE, 2015, 20 (09) : 541 - 544
  • [46] Open access to tree genomes: the path to a better forest
    David B Neale
    Charles H Langley
    Steven L Salzberg
    Jill L Wegrzyn
    Genome Biology, 14
  • [47] Mosaic bacterial chromosomes: a challenge on route to a tree of genomes
    Martin, W
    BIOESSAYS, 1999, 21 (02) : 99 - 104
  • [49] GENETICS Giant tree genomes sequenced, aiding conservation
    Brainard, Jeffrey
    SCIENCE, 2019, 364 (6439) : 416 - 416
  • [50] Comprehensive analyses of genomes, transcriptomes and metabolites of neem tree
    Kuravadi, Nagesh A.
    Yenagi, Vijay
    Rangiah, Kannan
    Mahesh, H. B.
    Rajamani, Anantharamanan
    Shirke, Meghana D.
    Russiachand, Heikham
    Loganathan, Ramya Malarini
    Lingu, Chandana Shankara
    Siddappa, Shilpa
    Ramamurthy, Aishwarya
    Sathyanarayana, B. N.
    Gowda, Malali
    PEERJ, 2015, 3