CartograTree: connecting tree genomes, phenotypes and environment

被引:4
|
作者
Vasquez-Gross, Hans A. [1 ]
Yu, John J. [1 ]
Figueroa, Ben [1 ]
Gessler, Damian D. G. [2 ]
Neale, David B. [1 ]
Wegrzyn, Jill L. [1 ]
机构
[1] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA
[2] Univ Arizona, IPlant Collaborat, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
association study; forest trees; genotype; landscape genomics; phenotype; web services; PINUS-TAEDA L; CLIMATE-CHANGE; SEMANTIC WEB; POPULATION; SOFTWARE; ONTOLOGY; SERVICES; DATABASE; BIOLOGY; TOOL;
D O I
10.1111/1755-0998.12067
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Today, researchers spend a tremendous amount of time gathering, formatting, filtering and visualizing data collected from disparate sources. Under the umbrella of forest tree biology, we seek to provide a platform and leverage modern technologies to connect biotic and abiotic data. Our goal is to provide an integrated web-based workspace that connects environmental, genomic and phenotypic data via geo-referenced coordinates. Here, we connect the genomic query web-based workspace, DiversiTree and a novel geographical interface called CartograTree to data housed on the TreeGenes database. To accomplish this goal, we implemented Simple Semantic Web Architecture and Protocol to enable the primary genomics database, TreeGenes, to communicate with semantic web services regardless of platform or back-end technologies. The novelty of CartograTree lies in the interactive workspace that allows for geographical visualization and engagement of high performance computing (HPC) resources. The application provides a unique tool set to facilitate research on the ecology, physiology and evolution of forest tree species. CartograTree can be accessed at: http://dendrome.ucdavis.edu/cartogratree.
引用
收藏
页码:528 / 537
页数:10
相关论文
共 50 条
  • [31] ANALYSIS OF TREE GENOMES STRUCTURE, DIVERSITY AND THEIR RELATIONSHIP
    Zaina, G.
    Ivanissevich, S.
    DePaoli, E.
    Zuccolo, A.
    Cattonaro, F.
    Morgante, M.
    ACTA PHYSIOLOGIAE PLANTARUM, 2004, 26 (03) : 299 - 299
  • [32] Viral genomes are part of the phylogenetic tree of life
    Ethan B. Ludmir
    Lynn W. Enquist
    Nature Reviews Microbiology, 2009, 7 : 615 - 615
  • [33] The Dynamic Nature of Genomes across the Tree of Life
    Oliverio, Angela M.
    Katz, Laura A.
    GENOME BIOLOGY AND EVOLUTION, 2014, 6 (03): : 482 - 488
  • [34] Connecting genotypes to medically relevant phenotypes in major vector mosquitoes
    Lawniczak, Mara K. N.
    CURRENT OPINION IN INSECT SCIENCE, 2015, 10 : 59 - 64
  • [35] How the environment shapes cancer genomes
    Pfeifer, Gerd P.
    CURRENT OPINION IN ONCOLOGY, 2015, 27 (01) : 71 - 77
  • [36] A fast method to generate hundreds of thousands of synthetic genomes and phenotypes
    Wharrie, Sophie
    Yang, Zhiyu
    Raj, Vishnu
    Gupta, Rahul
    Monti, Remo
    Wang, Ying
    Palamara, Pier Francesco
    Kaski, Samuel
    Ganna, Andrea
    Lippert, Christoph
    Marttinen, Pekka
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2023, 31 : 291 - 291
  • [37] What exactly are genomes, genotypes and phenotypes? And what about phenomes?
    Mahner, M
    Kary, M
    JOURNAL OF THEORETICAL BIOLOGY, 1997, 186 (01) : 55 - 63
  • [38] When genomes meet - RNA, epigenetics and phenotypes of hybrid plant
    Baulcombe, D.
    Shivaprasad, P.
    Gouil, Q.
    Bond, D.
    FEBS JOURNAL, 2014, 281 : 6 - 6
  • [39] KEGG for linking genomes to life and the environment
    Kanehisa, Minoru
    Araki, Michihiro
    Goto, Susumu
    Hattori, Masahiro
    Hirakawa, Mika
    Itoh, Masumi
    Katayama, Toshiaki
    Kawashima, Shuichi
    Okuda, Shujiro
    Tokimatsu, Toshiaki
    Yamanishi, Yoshihiro
    NUCLEIC ACIDS RESEARCH, 2008, 36 : D480 - D484
  • [40] Computational inference of metabolic pathways and phenotypes in metagenome assembled genomes
    Kazanov, Marat D.
    Leyn, Semen A.
    Rodionov, Dmitry A.
    BMC BIOINFORMATICS, 2021, 22 (SUPPL 16):