COUNTING ELLIPTIC SURFACES OVER FINITE FIELDS

被引:0
|
作者
de Jong, A. J. [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
关键词
Elliptic curves; elliptic surfaces; rank; average rank; Selmer group;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We count the number of isomorphism classes of elliptic curves of given height d over the field of rational functions in one variable over the finite field of q elements. We also estimate the number of isomorphism classes of elliptic surfaces over the projective line, which have a polarization of relative degree 3. This leads to an upper bound for the average 3-Selmer rank of the aforementionned curves. Finally, we deduce a new upper bound for the average rank of elliptic curves in the large d limit, namely the average rank is asymptotically bounded by 1.5 + O(1/q).
引用
收藏
页码:281 / 311
页数:31
相关论文
共 50 条
  • [41] ON THE MERTENS CONJECTURE FOR ELLIPTIC CURVES OVER FINITE FIELDS
    Humphries, Peter
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (01) : 19 - 32
  • [42] Group structure of elliptic curves over finite fields
    Wittmann, C
    JOURNAL OF NUMBER THEORY, 2001, 88 (02) : 335 - 344
  • [43] A CONCISE FORMULA ON ELLIPTIC CURVES OVER FINITE FIELDS
    Li, Lingyun
    Zhang, Shaohua
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2010, 17 (01): : 21 - 25
  • [44] Digital signature with elliptic curves over the finite fields
    Alinejad, M.
    Zadeh, S. Hassan
    Biranvand, N.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (05): : 1289 - 1301
  • [45] Division polynomials of elliptic curves over finite fields
    Cheon, J
    Hahn, S
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1996, 72 (10) : 226 - 227
  • [46] Lattices from elliptic curves over finite fields
    Fukshansky, Lenny
    Maharaj, Hiren
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 28 : 67 - 78
  • [47] Discriminants of complex multiplication fields of elliptic curves over finite fields
    Luca, Florian
    Shparlinski, Igor E.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2007, 50 (03): : 409 - 417
  • [48] Abelian surfaces over finite fields as Jacobians
    Maisner, D
    Nart, E
    Howe, EW
    EXPERIMENTAL MATHEMATICS, 2002, 11 (03) : 321 - 337
  • [49] Cubic surfaces over small finite fields
    Anton Betten
    Fatma Karaoglu
    Designs, Codes and Cryptography, 2019, 87 : 931 - 953
  • [50] ON SUPERSPECIAL ABELIAN SURFACES OVER FINITE FIELDS
    Xue, Jiangwei
    Yang, Tse-Chung
    Yu, Chia-Fu
    DOCUMENTA MATHEMATICA, 2016, 21 : 1607 - 1643