COUNTING ELLIPTIC SURFACES OVER FINITE FIELDS

被引:0
|
作者
de Jong, A. J. [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
关键词
Elliptic curves; elliptic surfaces; rank; average rank; Selmer group;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We count the number of isomorphism classes of elliptic curves of given height d over the field of rational functions in one variable over the finite field of q elements. We also estimate the number of isomorphism classes of elliptic surfaces over the projective line, which have a polarization of relative degree 3. This leads to an upper bound for the average 3-Selmer rank of the aforementionned curves. Finally, we deduce a new upper bound for the average rank of elliptic curves in the large d limit, namely the average rank is asymptotically bounded by 1.5 + O(1/q).
引用
收藏
页码:281 / 311
页数:31
相关论文
共 50 条
  • [21] Legendre elliptic curves over finite fields
    Auer, R
    Top, J
    JOURNAL OF NUMBER THEORY, 2002, 95 (02) : 303 - 312
  • [22] QUOTIENTS OF ELLIPTIC CURVES OVER FINITE FIELDS
    Achter, Jeffrey D.
    Wong, Siman
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (06) : 1395 - 1412
  • [23] GENERATORS OF ELLIPTIC CURVES OVER FINITE FIELDS
    Shparlinski, Igor E.
    Voloch, Jose Felipe
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2014, 9 (04): : 657 - 670
  • [24] On the elliptic divisibility sequences over finite fields
    Bizim, Osman
    World Academy of Science, Engineering and Technology, 2009, 35 : 1011 - 1015
  • [25] Orchards in elliptic curves over finite fields
    Padmanabhan, R.
    Shukla, Alok
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 68
  • [26] Cubic surfaces over finite fields
    Swinnerton-Dyer, Peter
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2010, 149 : 385 - 388
  • [27] On counting and generating curves over small finite fields
    Cheng, Q
    Huang, MD
    JOURNAL OF COMPLEXITY, 2004, 20 (2-3) : 284 - 296
  • [28] Counting points of homogeneous varieties over finite fields
    Brion, Michel
    Peyre, Emmanuel
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 645 : 105 - 124
  • [29] Counting points of slope varieties over finite fields
    Enkosky, Thomas
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [30] COUNTING POINTS OVER FINITE FIELDS AND HYPERGEOMETRIC FUNCTIONS
    Salerno, Adriana
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2013, 49 (01) : 137 - 157