Extension of the ML-EM algorithm for dose estimation using PET in proton therapy: application to an inhomogeneous target

被引:5
|
作者
Masuda, Takamitsu [1 ]
Nishio, Teiji [1 ]
Sano, Akira [1 ,2 ]
Karasawa, Kumiko [3 ]
机构
[1] Tokyo Womens Med Univ, Grad Sch Med, Dept Med Phys, Shinjuku Ku, 8-1 Kawadacho, Tokyo 1628666, Japan
[2] Mizuho Informat & Res Inst Inc, Chiyoda Ku, 2-3 Kanda Nishikicho, Tokyo 1018443, Japan
[3] Tokyo Womens Med Univ, Sch Med, Dept Radiat Oncol, Shinjuku Ku, 8-1 Kawadacho, Tokyo 1628666, Japan
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2020年 / 65卷 / 18期
关键词
proton therapy; PET imaging; dose estimation; range verification; filtering; ML-EM algorithm; POSITRON-EMISSION-TOMOGRAPHY; IN-BEAM; IMAGE-RECONSTRUCTION; RING OPENPET; VERIFICATION; DELIVERY; WASHOUT; BODY;
D O I
10.1088/1361-6560/ab98cf
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Positron emission tomography (PET) has been used forin vivotreatment verification, mainly for range verification, in proton therapy. Evaluating the direct dose from PET measurements remains challenging; however, it is highly desirable from a clinical perspective. In this study, a method for estimating the dose distribution from the positron emitter distributions was developed using the maximum likelihood expectation maximization algorithm. The 1D spatial relationship between positron emitter distributions and a dose distribution in an inhomogeneous target was inputted into the system matrix based on a filter framework. In contrast, spatial resolution of the PET system and total variation regularization (as prior knowledge for dose distribution) were considered in the 3D image-space. The dose estimation was demonstrated using Monte Carlo simulated PET activity distributions with substantial noise in a head and neck phantom. This mimicked the single field irradiation of the spread-out Bragg peak beams at clinical dose levels. Besides the simple implementation of the algorithm, this strategy achieved a high-speed calculation (30 s for a 3D dose estimation) and accurate dose and range estimations (less than 10% and 2 mm errors at 1-sigma values, respectively). The proposed method could be key for using PET forin vivodose monitoring.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] ML-EM algorithm for dose estimation using PET in proton therapy
    Masuda, Takamitsu
    Nishio, Teiji
    Kataoka, Jun
    Arimoto, Makoto
    Sano, Akira
    Karasawa, Kumiko
    PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (17):
  • [2] Application and performance of an ML-EM algorithm in NEXT
    Simon, A.
    Lerche, C.
    Monrabal, F.
    Gomez-Cadenas, J. J.
    Alvarez, V.
    Azevedo, C. D. R.
    Benlloch-Rodriguez, J. M.
    Borges, F. I. G. M.
    Botas, A.
    Carcel, S.
    Carrion, J. V.
    Cebrian, S.
    Conde, C. A. N.
    Diaz, J.
    Diesburg, M.
    Escada, J.
    Esteve, R.
    Felkai, R.
    Fernandes, L. M. P.
    Ferrario, P.
    Ferreira, A. L.
    Freitas, E. D. C.
    Goldschmidt, A.
    Gonzalez-Diaz, D.
    Gutierrez, R. M.
    Hauptman, J.
    Henriques, C. A. O.
    Hernandez, A. I.
    Hernando Morata, J. A.
    Herrero, V.
    Jones, B. J. P.
    Labarga, L.
    Laing, A.
    Lebrun, P.
    Liubarsky, I.
    Lopez-March, N.
    Losada, M.
    Martin-Albo, J.
    Martinez-Lema, G.
    Martinez, A.
    McDonald, A. D.
    Monteiro, C. M. B.
    Mora, F. J.
    Moutinho, L. M.
    Munoz Vidal, J.
    Musti, M.
    Nebot-Guinot, M.
    Novella, P.
    Nygren, D. R.
    Palmeiro, B.
    JOURNAL OF INSTRUMENTATION, 2017, 12
  • [3] Event reconstruction in NEXT using the ML-EM algorithm
    Simon, A.
    Ferrario, P.
    Izmaylov, A.
    NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS, 2016, 273 : 2624 - 2626
  • [4] The role of the updating coefficient of the ML-EM algorithm in PET image reconstruction
    Gaitanis, A.
    Kontaxakis, G.
    Panayiotakis, G.
    Spyrou, G.
    Tzanakos, G.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2006, 33 : S314 - S314
  • [5] Spatiotemporal PET Reconstruction Using ML-EM with Learned Diffeomorphic Deformation
    Oktem, Ozan
    Pouchol, Camille
    Verdier, Olivier
    MACHINE LEARNING FOR MEDICAL IMAGE RECONSTRUCTION, MLMIR 2019, 2019, 11905 : 151 - 162
  • [6] Improvement in the quantitative accuracy and quality of pet images reconstructed by ML-EM algorithm
    Oishi, Yukihiro
    Ishii, Keizo
    Yamazaki, Hiromichi
    Matsuyama, Shigeo
    Kikuchi, Youhei
    Rodriguez, Mario
    Suzuki, Atsuro
    Yamaguchi, Takashi
    Itoh, Masatoshi
    Watanuki, Shoichi
    FUTURE MEDICAL ENGINEERING BASED ON BIONANOTECHNOLOGY, PROCEEDINGS, 2006, : 805 - +
  • [7] Dynamic List-Mode Reconstruction of PET Data based on the ML-EM Algorithm
    Gundlich, Brigitte
    Musmann, Patrick
    Weber, Simone
    2006 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOL 1-6, 2006, : 2791 - 2795
  • [8] Convergence study of an accelerated ML-EM algorithm using bigger step size
    Hwang, D
    Zeng, GL
    PHYSICS IN MEDICINE AND BIOLOGY, 2006, 51 (02): : 237 - 252
  • [9] Joint estimation of dynamic PET images and temporal basis functions using fully 4D ML-EM
    Reader, Andrew J.
    Sureau, Florent C.
    Comtat, Claude
    Trebossen, Regine
    Buvat, Irene
    PHYSICS IN MEDICINE AND BIOLOGY, 2006, 51 (21): : 5455 - 5474
  • [10] ML-EM Reconstruction Model including Total Variation for Low Dose PET High Resolution Data
    Chavez-Rivera, Lucia B.
    Ortega-Maynez, Leticia
    Mejia, Jose
    Mederos, Boris
    2015 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2015,