Event reconstruction in NEXT using the ML-EM algorithm

被引:2
|
作者
Simon, A. [1 ]
Ferrario, P. [1 ]
Izmaylov, A. [1 ]
机构
[1] UV, CSIC, Inst Fis Corpuscular, Valencia, Spain
关键词
NEXT; ML-EM; neutrinoless double beta decay;
D O I
10.1016/j.nuclphysbps.2015.10.010
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The NEXT collaboration aims to find the neutrinoless double beta decay in Xe-136. The rareness of this decay demands an exceptional background rejection. This can be obtained with an excellent energy resolution, which has been already demonstrated in the NEXT prototypes. In addition to this, the beta beta 0 nu decay in gas produces a characteristic topological signal which could be an extremely useful extra handle to avoid background events. The need for a satisfactory topology reconstruction has led the NEXT Collaboration to implement the Maximum Likelihood Expectation Maximization method (ML-EM) in the data processing scheme. ML-EM is a generic iterative algorithm for many kinds of inverse problems. Although this method is well known in medical imaging and has been used widely in Positron Emission Tomography, it has never been applied to a time projection chamber. First results and studies of the performance of the method will be presented in this poster.
引用
收藏
页码:2624 / 2626
页数:3
相关论文
共 50 条
  • [1] Application and performance of an ML-EM algorithm in NEXT
    Simon, A.
    Lerche, C.
    Monrabal, F.
    Gomez-Cadenas, J. J.
    Alvarez, V.
    Azevedo, C. D. R.
    Benlloch-Rodriguez, J. M.
    Borges, F. I. G. M.
    Botas, A.
    Carcel, S.
    Carrion, J. V.
    Cebrian, S.
    Conde, C. A. N.
    Diaz, J.
    Diesburg, M.
    Escada, J.
    Esteve, R.
    Felkai, R.
    Fernandes, L. M. P.
    Ferrario, P.
    Ferreira, A. L.
    Freitas, E. D. C.
    Goldschmidt, A.
    Gonzalez-Diaz, D.
    Gutierrez, R. M.
    Hauptman, J.
    Henriques, C. A. O.
    Hernandez, A. I.
    Hernando Morata, J. A.
    Herrero, V.
    Jones, B. J. P.
    Labarga, L.
    Laing, A.
    Lebrun, P.
    Liubarsky, I.
    Lopez-March, N.
    Losada, M.
    Martin-Albo, J.
    Martinez-Lema, G.
    Martinez, A.
    McDonald, A. D.
    Monteiro, C. M. B.
    Mora, F. J.
    Moutinho, L. M.
    Munoz Vidal, J.
    Musti, M.
    Nebot-Guinot, M.
    Novella, P.
    Nygren, D. R.
    Palmeiro, B.
    JOURNAL OF INSTRUMENTATION, 2017, 12
  • [2] Superiorization of the ML-EM Algorithm
    Garduno, Edgar
    Herman, Gabor T.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2014, 61 (01) : 162 - 172
  • [3] The role of the updating coefficient of the ML-EM algorithm in PET image reconstruction
    Gaitanis, A.
    Kontaxakis, G.
    Panayiotakis, G.
    Spyrou, G.
    Tzanakos, G.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2006, 33 : S314 - S314
  • [4] The ML-EM Algorithm is Not Optimal for Poisson Noise
    Zeng, Gengsheng L.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2015, 62 (05) : 2096 - 2101
  • [5] Spatiotemporal PET Reconstruction Using ML-EM with Learned Diffeomorphic Deformation
    Oktem, Ozan
    Pouchol, Camille
    Verdier, Olivier
    MACHINE LEARNING FOR MEDICAL IMAGE RECONSTRUCTION, MLMIR 2019, 2019, 11905 : 151 - 162
  • [6] A tailored ML-EM algorithm for reconstruction of truncated projection data using few view angles
    Mao, Yanfei
    Zeng, Gengsheng L.
    PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (12): : N157 - N169
  • [7] The ML-EM Algorithm Is Not Optimal For Poisson Noise
    Zeng, Gengsheng L.
    2015 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2015,
  • [8] ML-EM algorithm for dose estimation using PET in proton therapy
    Masuda, Takamitsu
    Nishio, Teiji
    Kataoka, Jun
    Arimoto, Makoto
    Sano, Akira
    Karasawa, Kumiko
    PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (17):
  • [9] The ML-EM algorithm in continuum: sparse measure solutions
    Pouchol, Camille
    Verdier, Olivier
    INVERSE PROBLEMS, 2020, 36 (03)
  • [10] Dynamic List-Mode Reconstruction of PET Data based on the ML-EM Algorithm
    Gundlich, Brigitte
    Musmann, Patrick
    Weber, Simone
    2006 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOL 1-6, 2006, : 2791 - 2795