Persistent standoff tracking guidance using constrained particle filter for multiple UAVs

被引:40
|
作者
Oh, Hyondong [1 ]
Kim, Seungkeun [2 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Sch Mech Aerosp & Nucl Engn, Ulsan 44919, South Korea
[2] Chungnam Natl Univ, Dept Aerosp Engn, 99 Daehak Ro, Daejeon 34134, South Korea
基金
新加坡国家研究基金会;
关键词
Unmanned aerial vehicle; Standoff tracking; Vector field; Nonlinear model predictive control; Particle filter; TARGET TRACKING; MOVING TARGETS; OBSTACLE AVOIDANCE; INFORMATION;
D O I
10.1016/j.ast.2018.10.016
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper presents a new standoff tracking framework of a moving ground target using UAVs with limited sensing capabilities and motion constraints. To maintain persistent track of the target even in case of target loss for a certain period, this study predicts the target existence area using the particle filter and produces control commands that ensure that all predicted particles can stay within the field-of-view of the UAV sensor at all times. To improve target position prediction and estimation accuracy, the road information is incorporated into the constrained particle filter where the road boundaries are modelled as inequality constraints. Both Lyapunov vector field guidance and nonlinear model predictive control-based methods are applied, and the characteristics of them are compared using numerical simulations. (C) 2018 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:257 / 264
页数:8
相关论文
共 50 条
  • [41] Tracking multiple acoustic sources in reverberant environments using regularized particle filter
    Antonacci, F.
    Matteucci, M.
    Migliore, D.
    Riva, D.
    Sarti, A.
    Tagliasacchi, M.
    Tubaro, S.
    PROCEEDINGS OF THE 2007 15TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING, 2007, : 99 - +
  • [42] Cooperative Vehicle Tracking Using Particle Filter Integrated with Interacting Multiple Models
    Huang, Chenming
    Wu, Xia
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [43] Multiple Human Tracking Using Particle Filter with Gaussian Process Dynamical Model
    Jing Wang
    Yafeng Yin
    Hong Man
    EURASIP Journal on Image and Video Processing, 2008
  • [44] Multiple Human Tracking Using Particle Filter with Gaussian Process Dynamical Model
    Wang, Jing
    Yin, Yafeng
    Man, Hong
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2008, 2008 (1)
  • [45] Background Subtraction-Based Multiple Object Tracking Using Particle Filter
    Kim, Intaek
    Awan, Tayyab Wahab
    Soh, Youngsung
    21ST INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING (IWSSIP 2014), 2014, : 71 - 74
  • [46] Tracking and recognizing actions of multiple hockey players using the boosted particle filter
    Lu, Wei-Lwun
    Okuma, Kenji
    Little, James J.
    IMAGE AND VISION COMPUTING, 2009, 27 (1-2) : 189 - 205
  • [47] Multiple mice tracking using a combination of particle filter and k-means
    Goncalves, Wesley Nunes
    Monteiro, Joao Bosco Oliveira
    Silva, Jonathan de Andrade
    Machado, Bruno Brandoli
    Pistori, Hemerson
    Odakura, Valguima
    PROCEEDINGS OF THE XX BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING, 2007, : 173 - +
  • [48] MULTIPLE OBJECT TRACKING USING AN AUTOMATIC VARIABLE-DIMENSION PARTICLE FILTER
    Arrospide, Jon
    Salgado, Luis
    Nieto, Marcos
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 49 - 52
  • [49] Tracking of Multiple Targets Using Optimal Number of UAVs
    Das, Arun
    Shirazipourazad, Shahrzad
    Hay, David
    Sen, Arunabha
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2019, 55 (04) : 1769 - 1784
  • [50] Comparing a Kalman Filter and a particle filter in a multiple objects tracking application
    Marron, M.
    Garcia, J. C.
    Sotelo, M. A.
    Cabello, M.
    Pizarro, D.
    Huerta, F.
    Cerro, J.
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING, CONFERENCE PROCEEDINGS BOOK, 2007, : 741 - 746