Persistent standoff tracking guidance using constrained particle filter for multiple UAVs

被引:40
|
作者
Oh, Hyondong [1 ]
Kim, Seungkeun [2 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Sch Mech Aerosp & Nucl Engn, Ulsan 44919, South Korea
[2] Chungnam Natl Univ, Dept Aerosp Engn, 99 Daehak Ro, Daejeon 34134, South Korea
基金
新加坡国家研究基金会;
关键词
Unmanned aerial vehicle; Standoff tracking; Vector field; Nonlinear model predictive control; Particle filter; TARGET TRACKING; MOVING TARGETS; OBSTACLE AVOIDANCE; INFORMATION;
D O I
10.1016/j.ast.2018.10.016
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper presents a new standoff tracking framework of a moving ground target using UAVs with limited sensing capabilities and motion constraints. To maintain persistent track of the target even in case of target loss for a certain period, this study predicts the target existence area using the particle filter and produces control commands that ensure that all predicted particles can stay within the field-of-view of the UAV sensor at all times. To improve target position prediction and estimation accuracy, the road information is incorporated into the constrained particle filter where the road boundaries are modelled as inequality constraints. Both Lyapunov vector field guidance and nonlinear model predictive control-based methods are applied, and the characteristics of them are compared using numerical simulations. (C) 2018 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:257 / 264
页数:8
相关论文
共 50 条
  • [21] AUDIO CONSTRAINED PARTICLE FILTER BASED VISUAL TRACKING
    Kilic, Volkan
    Barnard, Mark
    Wang, Wenwu
    Kittler, Josef
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 3627 - 3631
  • [22] Multiple target tracking with constrained motion using particle filtering methods
    Kyriakides, I
    Morrell, D
    Papandreou-Suppappola, A
    IEEE CAMSAP 2005: FIRST INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, 2005, : 85 - 88
  • [23] Decentralised Standoff Tracking of Moving Targets Using Adaptive Sliding Mode Control for UAVs
    Hyondong Oh
    Seungkeun Kim
    Antonios Tsourdos
    Brian A. White
    Journal of Intelligent & Robotic Systems, 2014, 76 : 169 - 183
  • [24] Decentralised Standoff Tracking of Moving Targets Using Adaptive Sliding Mode Control for UAVs
    Oh, Hyondong
    Kim, Seungkeun
    Tsourdos, Antonios
    White, Brian A.
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2014, 76 (01) : 169 - 183
  • [25] Optimal Tracking of Multiple Targets Using UAVs
    Hay, David
    Shirazipourazad, Shahrzad
    Sen, Arunabha
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS (COCOA 2014), 2014, 8881 : 750 - 763
  • [26] Face Tracking using Multiple Facial Features based on Particle Filter
    Tian Hui
    Chen Yi-qin
    Shen Ting-zhil
    2010 2ND INTERNATIONAL ASIA CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS (CAR 2010), VOL 3, 2010, : 72 - 75
  • [27] Object tracking based on parzen particle filter using multiple cues
    Song, Lei
    Zhang, Rong
    Liu, Zhengkai
    Chen, Xingxing
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2007, 2007, 4810 : 206 - 215
  • [28] A robust approach for multiple vehicles tracking using layered particle filter
    Wei Qi
    Xiong Zhang
    Li Chao
    Ouyang Yuanxin
    Sheng Hao
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2011, 65 (07) : 609 - 618
  • [29] Multiple target tracking with interaction using an MCMC MRF particle filter
    Campos, Helder F.S.
    Paulino, Nuno M.C.
    arXiv, 2021,
  • [30] Target tracking algorithm in standoff jammer using H infinity filter
    Hou, Jing
    Jing, Zhan-Rong
    Gao, Tian
    Yang, Yan
    Guangdianzi Jiguang/Journal of Optoelectronics Laser, 2013, 24 (11): : 2212 - 2217