Finite-difference method for transport of two-dimensional massless Dirac fermions in a ribbon geometry

被引:25
|
作者
Hernandez, Alexis R. [1 ,2 ]
Lewenkopf, Caio H. [3 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil
[2] Pontificia Univ Catolica Rio de Janeiro, Dept Fis, BR-22452970 Rio De Janeiro, Brazil
[3] Univ Fed Fluminense, Inst Fis, BR-24210346 Niteroi, RJ, Brazil
来源
PHYSICAL REVIEW B | 2012年 / 86卷 / 15期
关键词
CONDUCTANCE FLUCTUATIONS; TOPOLOGICAL INSULATORS; ELECTRONIC-PROPERTIES; QUANTUM WIRES; SIGMA-MODEL; GRAPHENE; LATTICE;
D O I
10.1103/PhysRevB.86.155439
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a numerical method to compute the Landauer conductance of noninteracting two-dimensional massless Dirac fermions in disordered systems. The method allows for the introduction of boundary conditions at the ribbon edges and accounts for an external magnetic field. By construction, the proposed discretization scheme avoids the fermion doubling problem. The method does not rely on an atomistic basis and is particularly useful to deal with long-range disorder, the correlation length of which largely exceeds the underlying material crystal lattice spacing. As an application, we study the case of monolayer graphene sheets with zigzag edges subjected to long-range disorder, which can be modeled by a single-cone Dirac equation.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] TWO-DIMENSIONAL FINITE-DIFFERENCE ANALYSIS OF SHAPE INSTABILITIES IN PLATES
    LEE, JK
    COURTNEY, TH
    JOURNAL OF METALS, 1987, 39 (07): : A54 - A54
  • [32] COMPACT ANALYTIC EXPRESSIONS OF TWO-DIMENSIONAL FINITE-DIFFERENCE FORMS
    REALI, M
    RANGOGNI, R
    PENNATI, V
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1984, 20 (01) : 121 - 130
  • [33] Effect of interactions on two-dimensional Dirac fermions
    Jia, Yongfei
    Guo, Huaiming
    Chen, Ziyu
    Shen, Shun-Qing
    Feng, Shiping
    PHYSICAL REVIEW B, 2013, 88 (07)
  • [34] Two-dimensional Dirac fermions in a mass superlattice
    De Martino, Alessandro
    Dell'Anna, Luca
    Handt, Lukas
    Miserocchi, Andrea
    Egger, Reinhold
    PHYSICAL REVIEW B, 2023, 107 (11)
  • [35] Electron fractionalization for two-dimensional Dirac fermions
    Chamon, Claudio
    Hou, Chang-Yu
    Jackiw, Roman
    Mudry, Christopher
    Pi, So-Young
    Semenoff, Gordon
    PHYSICAL REVIEW B, 2008, 77 (23):
  • [36] Strongly interacting two-dimensional Dirac fermions
    Lim, L. -K.
    Lazarides, A.
    Hemmerich, A.
    Smith, C. Morais
    EPL, 2009, 88 (03)
  • [37] Two-Dimensional Boron Hydride Sheets: High Stability, Massless Dirac Fermions, and Excellent Mechanical Properties
    Jiao, Yalong
    Ma, Fengxian
    Bell, John
    Bilic, Ante
    Du, Aijun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (35) : 10292 - 10295
  • [38] Quasi-two-dimensional massless Dirac fermions in CaMnSb2
    He, J. B.
    Fu, Y.
    Zhao, L. X.
    Liang, H.
    Chen, D.
    Leng, Y. M.
    Wang, X. M.
    Li, J.
    Zhang, S.
    Xue, M. Q.
    Li, C. H.
    Zhang, P.
    Ren, Z. A.
    Chen, G. F.
    PHYSICAL REVIEW B, 2017, 95 (04)
  • [39] Two-dimensional thermal model of the finite-difference lattice Boltzmann method with high spatial isotropy
    Watari, M
    Tsutahara, M
    PHYSICAL REVIEW E, 2003, 67 (03):
  • [40] An optimized implicit finite-difference scheme for the two-dimensional Helmholtz equation
    Liu, Zhao-lun
    Song, Peng
    Li, Jin-shan
    Li, Jing
    Zhang, Xiao-bo
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2015, 202 (03) : 1805 - 1826