Finite-difference method for transport of two-dimensional massless Dirac fermions in a ribbon geometry

被引:25
|
作者
Hernandez, Alexis R. [1 ,2 ]
Lewenkopf, Caio H. [3 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil
[2] Pontificia Univ Catolica Rio de Janeiro, Dept Fis, BR-22452970 Rio De Janeiro, Brazil
[3] Univ Fed Fluminense, Inst Fis, BR-24210346 Niteroi, RJ, Brazil
来源
PHYSICAL REVIEW B | 2012年 / 86卷 / 15期
关键词
CONDUCTANCE FLUCTUATIONS; TOPOLOGICAL INSULATORS; ELECTRONIC-PROPERTIES; QUANTUM WIRES; SIGMA-MODEL; GRAPHENE; LATTICE;
D O I
10.1103/PhysRevB.86.155439
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a numerical method to compute the Landauer conductance of noninteracting two-dimensional massless Dirac fermions in disordered systems. The method allows for the introduction of boundary conditions at the ribbon edges and accounts for an external magnetic field. By construction, the proposed discretization scheme avoids the fermion doubling problem. The method does not rely on an atomistic basis and is particularly useful to deal with long-range disorder, the correlation length of which largely exceeds the underlying material crystal lattice spacing. As an application, we study the case of monolayer graphene sheets with zigzag edges subjected to long-range disorder, which can be modeled by a single-cone Dirac equation.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] TWO-DIMENSIONAL QUANTUM CHROMODYNAMICS WITH MASSLESS FERMIONS
    SORENSEN, C
    THOMAS, GH
    PHYSICAL REVIEW D, 1980, 21 (06) : 1625 - 1635
  • [22] Stability of a Nonlocal Two-Dimensional Finite-Difference Problem
    A. V. Gulin
    N. I. Ionkin
    V. A. Morozova
    Differential Equations, 2001, 37 : 970 - 978
  • [23] Two-dimensional finite-difference model of seafloor compliance
    Iassonov, Pavel
    Crawford, Wayne
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2008, 174 (02) : 525 - 541
  • [24] Stability of a nonlocal two-dimensional finite-difference problem
    Gulin, AV
    Ionkin, NI
    Morozova, VA
    DIFFERENTIAL EQUATIONS, 2001, 37 (07) : 970 - 978
  • [25] A stability criterion for a two-dimensional finite-difference scheme
    Gulin, AV
    Degtyarev, SL
    DIFFERENTIAL EQUATIONS, 1996, 32 (07) : 950 - 957
  • [26] Geometry-independent tight-binding method for massless Dirac fermions in two dimensions
    Ziesen, Alexander
    Fulga, Ion Cosma
    Hassler, Fabian
    PHYSICAL REVIEW B, 2023, 107 (19)
  • [27] Renormalized transport properties of randomly gapped two-dimensional Dirac fermions
    Sinner, Andreas
    Ziegler, Klaus
    PHYSICAL REVIEW B, 2012, 86 (15):
  • [28] Quantum transport of two-dimensional Dirac fermions in SrMnBi2
    Wang, Kefeng
    Graf, D.
    Lei, Hechang
    Tozer, S. W.
    Petrovic, C.
    PHYSICAL REVIEW B, 2011, 84 (22)
  • [29] Two-Dimensional Massless Dirac Fermions in Antiferromagnetic A Fe2As2 (A=Ba,Sr)
    Chen, Zhi-Guo
    Wang, Luyang
    Song, Yu
    Lu, Xingye
    Luo, Huiqian
    Zhang, Chenglin
    Dai, Pengcheng
    Yin, Zhiping
    Haule, Kristjan
    Kotliar, Gabriel
    PHYSICAL REVIEW LETTERS, 2017, 119 (09)
  • [30] TWO-DIMENSIONAL FINITE-DIFFERENCE ANALYSIS OF SHAPE INSTABILITIES IN PLATES
    LEE, JK
    COURTNEY, TH
    METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1989, 20 (08): : 1385 - 1394