Multiple solutions with precise sign for nonlinear parametric Robin problems

被引:113
|
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
[2] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia
[3] Acad Romana, Simion Stoilow Math Inst, Bucharest, Romania
关键词
Nonlinear regularity; Nonlinear maximum principle; Robin p-Laplacian; Nodal and constant sign solutions; Extremal solutions; Morse theory; P-LAPLACIAN; ELLIPTIC-EQUATIONS; LOCAL MINIMIZERS; SPECTRUM;
D O I
10.1016/j.jde.2014.01.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a parametric nonlinear Robin problem driven by the p-Laplacian. We show that if the parameter lambda > (lambda) over cap (2) = the second eigenvalue of the Robin p-Laplacian, then the problem has at least three nontrivial solutions, two of constant sign and the third nodal. In the semilinear case (p = 2), we show that we can generate a second nodal solution. Our approach uses variational methods, truncation and perturbation techniques, and Morse theory. In the process we produce two useful remarks about the first two eigenvalues of the Robin p-Laplacian. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:2449 / 2479
页数:31
相关论文
共 50 条
  • [41] Constant-sign and sign-changing solutions for nonlinear eigenvalue problems
    Carl, Siegfried
    Motreanu, Dumitru
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (09) : 2668 - 2676
  • [42] Positive solutions for nonlinear Robin problems with indefinite potential and competing nonlinearities
    S. Leonardi
    Nikolaos S. Papageorgiou
    Positivity, 2020, 24 : 339 - 367
  • [43] Constant Sign and Nodal Solutions for Nonlinear Robin Equations with Locally Defined Source Term
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    MATHEMATICAL MODELLING AND ANALYSIS, 2020, 25 (03) : 374 - 390
  • [44] Least Energy Solutions with Sign Information for Parametric Double Phase Problems
    Nikolaos S. Papageorgiou
    Calogero Vetro
    Francesca Vetro
    Results in Mathematics, 2022, 77
  • [45] Least Energy Solutions with Sign Information for Parametric Double Phase Problems
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    RESULTS IN MATHEMATICS, 2022, 77 (01)
  • [46] Constant sign and nodal solutions for nonhomogeneous Robin boundary value problems with asymmetric reactions
    Iannizzotto, Antonio
    Marras, Monica
    Papageorgiou, Nikolaos S.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2018, (71) : 1 - 28
  • [47] PARAMETRIC NONLINEAR PDES WITH MULTIPLE SOLUTIONS: A PGD APPROACH
    Beringhier, Marianne
    Leygue, Adrien
    Chinesta, Francisco
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (02): : 383 - 392
  • [48] PRECISE RANGE OF THE EXISTENCE OF POSITIVE SOLUTIONS OF A NONLINEAR, INDEFINITE IN SIGN NEUMANN PROBLEM
    Lubyshev, Vladimir
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (03) : 999 - 1018
  • [49] Multiple solutions for parametric double phase Dirichlet problems
    Papageorgiou, N. S.
    Vetro, C.
    Vetro, F.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (04)
  • [50] Multiple solutions for a class of semilinear elliptic problems with Robin boundary condition
    Zhang, Jing
    Li, Shujie
    Xue, Xiaoping
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (01) : 435 - 442