Multiple solutions with precise sign for nonlinear parametric Robin problems

被引:113
|
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
[2] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia
[3] Acad Romana, Simion Stoilow Math Inst, Bucharest, Romania
关键词
Nonlinear regularity; Nonlinear maximum principle; Robin p-Laplacian; Nodal and constant sign solutions; Extremal solutions; Morse theory; P-LAPLACIAN; ELLIPTIC-EQUATIONS; LOCAL MINIMIZERS; SPECTRUM;
D O I
10.1016/j.jde.2014.01.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a parametric nonlinear Robin problem driven by the p-Laplacian. We show that if the parameter lambda > (lambda) over cap (2) = the second eigenvalue of the Robin p-Laplacian, then the problem has at least three nontrivial solutions, two of constant sign and the third nodal. In the semilinear case (p = 2), we show that we can generate a second nodal solution. Our approach uses variational methods, truncation and perturbation techniques, and Morse theory. In the process we produce two useful remarks about the first two eigenvalues of the Robin p-Laplacian. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:2449 / 2479
页数:31
相关论文
共 50 条
  • [11] Existence of multiple solutions with precise sign information for superlinear Neumann problems
    Sergiu Aizicovici
    Nikolaos S. Papageorgiou
    Vasile Staicu
    Annali di Matematica Pura ed Applicata, 2009, 188 : 679 - 719
  • [12] Existence of multiple solutions with precise sign information for superlinear Neumann problems
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (04) : 679 - 715
  • [13] Nonlinear Parametric Robin Problems with Combined Nonlinearities
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    ADVANCED NONLINEAR STUDIES, 2015, 15 (03) : 715 - 748
  • [14] Solutions for parametric double phase Robin problems
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    ASYMPTOTIC ANALYSIS, 2021, 121 (02) : 159 - 170
  • [15] POSITIVE SOLUTIONS FOR NONLINEAR ROBIN PROBLEMS
    Averna, Diego
    Papageorgiou, Nikolaos S.
    Tornatore, Elisabetta
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [16] Positive Solutions for Nonlinear Nonhomogeneous Robin Problems
    Gasinski, Leszek
    O'Regan, Donal
    Papageorgiou, Nikolaos S.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2015, 34 (04): : 435 - 458
  • [17] POSITIVE SOLUTIONS OF NONLINEAR ROBIN EIGENVALUE PROBLEMS
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (11) : 4913 - 4928
  • [18] Positive solutions for nonlinear Robin problems with convection
    Averna, Diego
    Papageorgiou, Nikolaos S.
    Tornatore, Elisabetta
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (06) : 1907 - 1920
  • [19] MULTIPLICITY OF SOLUTIONS FOR NONLINEAR NONHOMOGENEOUS ROBIN PROBLEMS
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (02) : 601 - 611
  • [20] Nodal solutions for nonlinear nonhomogeneous Robin problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (04) : 721 - 738