Control of Rabi-splitting energies of exciton polaritons in CuI microcavities

被引:3
|
作者
Nakayama, Masaaki [1 ]
Kameda, Masanobu [1 ]
Kawase, Toshiki [1 ]
Kim, DaeGwi [1 ]
机构
[1] Osaka City Univ, Grad Sch Engn, Dept Appl Phys, Sumiyoshi Ku, Osaka 5588585, Japan
来源
EUROPEAN PHYSICAL JOURNAL B | 2013年 / 86卷 / 02期
基金
日本学术振兴会;
关键词
Copper compounds - Excitons - Hamiltonians - Phonons - Photons;
D O I
10.1140/epjb/e2012-30503-6
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We have investigated the active-layer-thickness dependence of exciton-photon interactions in CuI microcavities. The active layer thickness was changed from lambda/2 to 2 lambda, where lambda corresponds to an effective resonant wavelength of the lowest-lying exciton. In the CuI active layer, thermal strain removes the degeneracy of the heavy-hole (HH) and light-hole (LH) excitons at the G point. Angle-resolved reflectance spectra measured at 10 K demonstrate the strong coupling between the HH and LH excitons and cavity photon, resulting in the formation of three cavity-polariton branches: the lower, middle, and upper polariton branches. The energies of the three cavity-polariton modes as a function of incidence angle are reasonably explained using a phenomenological Hamiltonian to describe the exciton-photon strong coupling. It is found that the interaction energies of the cavity-polariton modes, the so-called vacuum Rabi-splitting energies, are systematically controlled from 29 (50) to 48 (84) meV for the LH (HH) exciton by changing the active layer thickness from lambda/2 to 2 lambda. The active-layer-thickness dependence of the Rabi-splitting energies is semi-quantitatively explained by a simple model.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Tracking Dark Excitons with Exciton Polaritons in Semiconductor Microcavities
    Schmidt, D.
    Berger, B.
    Kahlert, M.
    Bayer, M.
    Schneider, C.
    Hoefling, S.
    Sedov, E. S.
    Kavokin, A. V.
    Assmann, M.
    PHYSICAL REVIEW LETTERS, 2019, 122 (04)
  • [42] Two-Dimensional Localization of Exciton Polaritons in Microcavities
    Egorov, O. A.
    Gorbach, A. V.
    Lederer, F.
    Skryabin, D. V.
    PHYSICAL REVIEW LETTERS, 2010, 105 (07)
  • [43] Quantum theory of exciton polaritons in cylindrical semiconductor microcavities
    Panzarini, G
    Andreani, LC
    PHYSICAL REVIEW B, 1999, 60 (24) : 16799 - 16806
  • [44] Boundary effects on the dynamics of exciton polaritons in semiconductor microcavities
    Zhang, Yongyou
    Jin, Guojun
    Ma, Yu-Qiang
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (03)
  • [45] Coupling Enhancement and Giant Rabi-Splitting in Large Arrays of Tunable Plexcitonic Substrates
    Chantharasupawong, Panit
    Tetard, Laurene
    Thomas, Jayan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (41): : 23954 - 23962
  • [46] Exciton polaritons in quantum wells embedded in waveguides and microcavities
    Jorda, S
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1996, 13 (05) : 1054 - 1060
  • [47] On the condensation of exciton polaritons in microcavities induced by a magnetic field
    Kochereshko, V. P.
    Avdoshina, D. V.
    Savvidis, P.
    Tsintzos, S. I.
    Hatzopoulos, Z.
    Kavokin, A. V.
    Besombes, L.
    Mariette, H.
    SEMICONDUCTORS, 2016, 50 (11) : 1506 - 1510
  • [48] Loss of coherence of exciton polaritons in inhomogeneous organic microcavities
    Litinskaya, Marina
    Reineker, Peter
    PHYSICAL REVIEW B, 2006, 74 (16):
  • [49] Energy relaxation of exciton polaritons in microcavities in the bottleneck range
    Kulakovskij, V.D.
    Krizhanovskij, D.N.
    Gippius, N.A.
    Dremin, A.A.
    Dasbach, G.
    Bayer, M.
    Forchel, A.
    Izvestiya Akademii Nauk. Ser. Fizicheskaya, 2002, 66 (02): : 207 - 212
  • [50] Exciton-polaritons in microcavities: Recent discoveries and perspectives
    Kavokin, Alexey
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (08): : 1898 - 1906