Control of Rabi-splitting energies of exciton polaritons in CuI microcavities

被引:3
|
作者
Nakayama, Masaaki [1 ]
Kameda, Masanobu [1 ]
Kawase, Toshiki [1 ]
Kim, DaeGwi [1 ]
机构
[1] Osaka City Univ, Grad Sch Engn, Dept Appl Phys, Sumiyoshi Ku, Osaka 5588585, Japan
来源
EUROPEAN PHYSICAL JOURNAL B | 2013年 / 86卷 / 02期
基金
日本学术振兴会;
关键词
Copper compounds - Excitons - Hamiltonians - Phonons - Photons;
D O I
10.1140/epjb/e2012-30503-6
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We have investigated the active-layer-thickness dependence of exciton-photon interactions in CuI microcavities. The active layer thickness was changed from lambda/2 to 2 lambda, where lambda corresponds to an effective resonant wavelength of the lowest-lying exciton. In the CuI active layer, thermal strain removes the degeneracy of the heavy-hole (HH) and light-hole (LH) excitons at the G point. Angle-resolved reflectance spectra measured at 10 K demonstrate the strong coupling between the HH and LH excitons and cavity photon, resulting in the formation of three cavity-polariton branches: the lower, middle, and upper polariton branches. The energies of the three cavity-polariton modes as a function of incidence angle are reasonably explained using a phenomenological Hamiltonian to describe the exciton-photon strong coupling. It is found that the interaction energies of the cavity-polariton modes, the so-called vacuum Rabi-splitting energies, are systematically controlled from 29 (50) to 48 (84) meV for the LH (HH) exciton by changing the active layer thickness from lambda/2 to 2 lambda. The active-layer-thickness dependence of the Rabi-splitting energies is semi-quantitatively explained by a simple model.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Oscillator model for vacuum Rabi splitting in microcavities
    Rudin, S
    Reinecke, TL
    PHYSICAL REVIEW B, 1999, 59 (15) : 10227 - 10233
  • [22] Transport regimes for exciton polaritons in disordered microcavities
    Osipov, A. N.
    V. Iorsh, I.
    V. Yulin, A.
    Shelykh, I. A.
    PHYSICAL REVIEW B, 2023, 108 (10)
  • [23] Exciton-polaritons in microcavities: present and future
    A. Kavokin
    Applied Physics A, 2007, 89 : 241 - 246
  • [24] Exciton-polaritons in microcavities: present and future
    Kavokin, A.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2007, 89 (02): : 241 - 246
  • [25] Spin dynamics of interacting exciton polaritons in microcavities
    Shelykh, I
    Malpuech, G
    Kavokin, KV
    Kavokin, AV
    Bigenwald, P
    PHYSICAL REVIEW B, 2004, 70 (11) : 115301 - 1
  • [26] Oscillating Motion of Exciton–Polaritons in Anisotropic Microcavities
    Sedova I.E.
    Sedov E.S.
    Arakelian S.M.
    Kavokin A.V.
    Arakelian, S.M. (arak@vlsu.ru), 1600, Pleiades journals (84): : 1453 - 1458
  • [27] Frenkel-exciton-polaritons in organic microcavities
    Zoubi, Hashem
    La Rocca, G. C.
    BRAZILIAN JOURNAL OF PHYSICS, 2006, 36 (2A) : 455 - 458
  • [28] Hyperspectral Imaging of Exciton Polaritons in Optical Microcavities
    Polat, Nahit
    Yakar, Ozan
    O''zdemir, Sahin K.
    Balci, Sinan
    ACS PHOTONICS, 2024, 11 (04) : 1804 - 1809
  • [29] Microscopic description of exciton-polaritons in microcavities
    Levinsen, Jesper
    Li, Guangyao
    Parish, Meera M.
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [30] Manipulating dynamical Rabi-splitting with two-color laser pulses
    Agueny, H.
    Taoutioui, A.
    Adnani, Y.
    Makhoute, A.
    OPTICS EXPRESS, 2019, 27 (15): : 21020 - 21028