The Weil representation and Gauss sums

被引:1
|
作者
Bluher, A
机构
[1] National Security Agency, Simpsonville, MD 21150
关键词
D O I
10.2140/pjm.1996.173.357
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the Well representation to evaluate certain Gauss sums over a local field, up to +/- 1. Also we construct a cocycle on Sp(2m,R) with a simple formula on the maximal compact torus and we show how to lift homomorphisms j:Sp(2n,R) --> Sp(2m, R) to the double covers of these groups.
引用
收藏
页码:357 / 373
页数:17
相关论文
共 50 条
  • [21] On the uniform distribution of Gauss sums and Jacobi sums
    Katz, NM
    Zheng, ZY
    ANALYTIC NUMBER THEORY, VOL. 2 - PROCEEDINGS OF A CONFERENCE IN HONOR OF HEINI HALBERSTAM, 1996, 139 : 537 - 558
  • [22] GAUSS SUMS AND KLOOSTERMAN SUMS - KLOOSTERMAN SHEAVES
    不详
    ANNALS OF MATHEMATICS STUDIES, 1988, (116): : 46 - +
  • [23] Weil Sums over Small Subgroups
    Ostafe, Alina
    Shparlinski, Igor E.
    Voloch, Jose Felipe
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2024, 176 (01) : 39 - 53
  • [24] Explicit evaluations of some Weil sums
    Coulter, RS
    ACTA ARITHMETICA, 1998, 83 (03) : 241 - 251
  • [25] The geometric weil representation
    Gurevich, Shamgar
    Hadani, Ronny
    SELECTA MATHEMATICA-NEW SERIES, 2007, 13 (03): : 465 - 481
  • [26] The geometric Weil representation
    Shamgar Gurevich
    Ronny Hadani
    Selecta Mathematica, 2008, 13
  • [27] The character of the Weil representation
    Thomas, Teruji
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 77 : 221 - 239
  • [28] Weil representation and β-extensions
    Blondel, Corinne
    ANNALES DE L INSTITUT FOURIER, 2012, 62 (04) : 1319 - 1366
  • [29] A Note on the Classical Gauss Sums
    Wang, Tingting
    Chen, Guohui
    MATHEMATICS, 2018, 6 (12):
  • [30] Gauss sums and binomial coefficients
    Lee, DH
    Hahn, SG
    JOURNAL OF NUMBER THEORY, 2002, 92 (02) : 257 - 271