Proton-irradiation-immune electronics implemented with two-dimensional charge-density-wave devices

被引:30
|
作者
Geremew, A. K. [1 ]
Kargar, F. [1 ]
Zhang, E. X. [2 ]
Zhao, S. E. [2 ]
Aytan, E. [1 ]
Bloodgood, M. A. [3 ]
Salguero, T. T. [3 ]
Rumyantsev, S. [1 ,4 ]
Fedoseyev, A. [5 ]
Fleetwood, D. M. [2 ]
Balandin, A. A. [1 ]
机构
[1] Univ Calif Riverside, Dept Elect & Comp Engn, Nanodevice Lab, Mat Sci & Engn Program, Riverside, CA 92521 USA
[2] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA
[3] Univ Georgia, Dept Chem, Athens, GA 30602 USA
[4] Polish Acad Sci, Ctr Terahertz Res & Applicat, Inst High Pressure Phys, PL-01142 Warsaw, Poland
[5] Ultra Quantum Inc, Huntsville, AL 35758 USA
基金
美国国家科学基金会;
关键词
DEFECT FORMATION; RADIATION; MOSFETS;
D O I
10.1039/c9nr01614g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We demonstrate that charge-density-wave devices with quasi-two-dimensional 1T-TaS2 channels show remarkable immunity to bombardment with 1.8 MeV protons to a fluence of at least 10(14) H(+)cm(-2). The current-voltage characteristics of these devices do not change as a result of proton irradiation, in striking contrast to most conventional semiconductor devices or other two-dimensional devices. Only negligible changes are found in the low-frequency noise spectra. The radiation immunity of these all-metallic charge-density-wave devices is attributed to the quasi-2D nature of the electron transport in the nanoscale-thickness channel, high concentration of charge carriers in the utilized charge-density-wave phases, and two-dimensional device design. Such devices, capable of operating over a wide temperature range, can constitute a crucial segment of future electronics for space, particle accelerator and other radiation environments.
引用
收藏
页码:8380 / 8386
页数:7
相关论文
共 50 条
  • [31] INFLUENCE OF LANDAU-LEVEL MIXING ON THE CHARGE-DENSITY-WAVE STATE OF A TWO-DIMENSIONAL ELECTRON-GAS IN A STRONG MAGNETIC-FIELD
    MACDONALD, AH
    PHYSICAL REVIEW B, 1984, 30 (08): : 4392 - 4398
  • [32] CHARGE-DENSITY-WAVE GLASS STATE IN QUASI-ONE-DIMENSIONAL CONDUCTORS
    NAD, F
    MONCEAU, P
    PHYSICAL REVIEW B, 1995, 51 (04): : 2052 - 2060
  • [33] Anomalous Hall effect and two-dimensional Fermi surfaces in the charge-density-wave state of kagome metal RbV3Sb5
    Wang, Lingfei
    Zhang, Wei
    Wang, Zheyu
    Poon, Tsz Fung
    Wang, Wenyan
    Tsang, Chun Wai
    Xie, Jianyu
    Zhou, Xuefeng
    Zhao, Yusheng
    Wang, Shanmin
    Lai, Kwing To
    Goh, Swee K.
    JOURNAL OF PHYSICS-MATERIALS, 2023, 6 (02):
  • [34] Charge-density-wave glass state in quasi-one-dimensional conductors
    Nad', F.
    Monceau, P.
    P C Magazine: The Independent Guide to IBM - Standard Personal Computers, 1994, 13 (21):
  • [35] TWO-DIMENSIONAL MATERIALS Double charge wave
    Son, Young-Woo
    NATURE PHYSICS, 2021, 17 (12) : 1284 - 1285
  • [36] Charge-density-wave quantum materials and devices-New developments and future prospects
    Balandin, Alexander A.
    Zaitsev-Zotov, Sergei V.
    Gruner, George
    APPLIED PHYSICS LETTERS, 2021, 119 (17)
  • [37] Quantum Enhancement of Charge Density Wave in NbS2 in the Two-Dimensional Limit
    Bianco, Raffaello
    Errea, Ion
    Monacelli, Lorenzo
    Calandra, Matteo
    Mauri, Francesco
    NANO LETTERS, 2019, 19 (05) : 3098 - 3103
  • [38] Two-dimensional Janus MoSeH with tunable charge density wave, superconductivity and topological properties
    Sui, Chang-Hao
    Qiao, Shu-Xiang
    Ding, Hao
    Jiang, Kai-Yue
    Shang, Shu-Ying
    Lu, Hong-Yan
    MATERIALS TODAY PHYSICS, 2025, 53
  • [39] Sliding charge-density wave in two-dimensional rare-earth tellurides
    Sinchenko, A. A.
    Lejay, P.
    Monceau, P.
    PHYSICAL REVIEW B, 2012, 85 (24):