Proton-irradiation-immune electronics implemented with two-dimensional charge-density-wave devices

被引:30
|
作者
Geremew, A. K. [1 ]
Kargar, F. [1 ]
Zhang, E. X. [2 ]
Zhao, S. E. [2 ]
Aytan, E. [1 ]
Bloodgood, M. A. [3 ]
Salguero, T. T. [3 ]
Rumyantsev, S. [1 ,4 ]
Fedoseyev, A. [5 ]
Fleetwood, D. M. [2 ]
Balandin, A. A. [1 ]
机构
[1] Univ Calif Riverside, Dept Elect & Comp Engn, Nanodevice Lab, Mat Sci & Engn Program, Riverside, CA 92521 USA
[2] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA
[3] Univ Georgia, Dept Chem, Athens, GA 30602 USA
[4] Polish Acad Sci, Ctr Terahertz Res & Applicat, Inst High Pressure Phys, PL-01142 Warsaw, Poland
[5] Ultra Quantum Inc, Huntsville, AL 35758 USA
基金
美国国家科学基金会;
关键词
DEFECT FORMATION; RADIATION; MOSFETS;
D O I
10.1039/c9nr01614g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We demonstrate that charge-density-wave devices with quasi-two-dimensional 1T-TaS2 channels show remarkable immunity to bombardment with 1.8 MeV protons to a fluence of at least 10(14) H(+)cm(-2). The current-voltage characteristics of these devices do not change as a result of proton irradiation, in striking contrast to most conventional semiconductor devices or other two-dimensional devices. Only negligible changes are found in the low-frequency noise spectra. The radiation immunity of these all-metallic charge-density-wave devices is attributed to the quasi-2D nature of the electron transport in the nanoscale-thickness channel, high concentration of charge carriers in the utilized charge-density-wave phases, and two-dimensional device design. Such devices, capable of operating over a wide temperature range, can constitute a crucial segment of future electronics for space, particle accelerator and other radiation environments.
引用
收藏
页码:8380 / 8386
页数:7
相关论文
共 50 条
  • [21] Three-dimensional ultrafast charge-density-wave dynamics in CuTe
    Quyen, Nguyen Nhat
    Tzeng, Wen-Yen
    Hsu, Chih-En
    Lin, I-An
    Chen, Wan-Hsin
    Jia, Hao-Hsiang
    Wang, Sheng-Chiao
    Liu, Cheng-En
    Chen, Yu-Sheng
    Chen, Wei-Liang
    Chou, Ta-Lei
    Wang, I-Ta
    Kuo, Chia-Nung
    Lin, Chun-Liang
    Wu, Chien-Te
    Lin, Ping-Hui
    Weng, Shih-Chang
    Cheng, Cheng-Maw
    Kuo, Chang-Yang
    Tu, Chien-Ming
    Chu, Ming-Wen
    Chang, Yu-Ming
    Lue, Chin Shan
    Hsueh, Hung-Chung
    Luo, Chih-Wei
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [22] Charge-density-wave melting in the one-dimensional Holstein model
    Stolpp, Jan
    Herbrych, Jacek
    Dorfner, Florian
    Dagotto, Elbio
    Heidrich-Meisner, Fabian
    PHYSICAL REVIEW B, 2020, 101 (03)
  • [23] Charge-density-wave state within Pd(dmit)2 layer in two-dimensional molecular conductor (IEDT)[Pd(dmit)2]
    Hanasaki, N
    Tajima, H
    Imakubo, T
    Kato, R
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (09) : 2291 - 2298
  • [25] CONDUCTION PROPERTIES OF A NEW TWO-DIMENSIONAL SLIDING CHARGE-DENSITY WAVE
    JIANG, HW
    DAHN, AJ
    PHYSICAL REVIEW LETTERS, 1989, 62 (12) : 1396 - 1399
  • [26] Purely anharmonic charge density wave in the two-dimensional Dirac semimetal SnP
    Gutierrez-Amigo, Martin
    Yuan, Fang
    Campi, Davide
    Schoop, Leslie M.
    Vergniory, Maia G.
    Errea, Ion
    PHYSICAL REVIEW B, 2024, 109 (17)
  • [27] Charge density wave in two-dimensional electron liquid in weak magnetic field
    Koulakov, AA
    Fogler, MM
    Shklovskii, BI
    PHYSICAL REVIEW LETTERS, 1996, 76 (03) : 499 - 502
  • [28] SIMULATION OF A CHARGE-DENSITY-WAVE TRANSITION IN A QUASI-ONE-DIMENSIONAL SYSTEM
    SCALAPINO, DJ
    SUGAR, RL
    TOUSSAINT, WD
    PHYSICAL REVIEW B, 1986, 34 (09): : 6367 - 6371
  • [29] Dimensional crossover of quantum nucleation processes in charge-density-wave phase slips
    Hatakenaka, N
    Shiobara, M
    Matsuda, K
    Tanda, S
    PHYSICAL REVIEW B, 1998, 57 (04): : R2003 - R2005
  • [30] CHARGE-DENSITY-WAVE INSTABILITIES IN THE LOW-DIMENSIONAL MOLYBDENUM BRONZES AND OXIDES
    SCHLENKER, C
    DUMAS, J
    ESCRIBEFILIPPINI, C
    GUYOT, H
    MARCUS, J
    FOURCAUDOT, G
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1985, 52 (03): : 643 - 667