Proton-irradiation-immune electronics implemented with two-dimensional charge-density-wave devices

被引:30
|
作者
Geremew, A. K. [1 ]
Kargar, F. [1 ]
Zhang, E. X. [2 ]
Zhao, S. E. [2 ]
Aytan, E. [1 ]
Bloodgood, M. A. [3 ]
Salguero, T. T. [3 ]
Rumyantsev, S. [1 ,4 ]
Fedoseyev, A. [5 ]
Fleetwood, D. M. [2 ]
Balandin, A. A. [1 ]
机构
[1] Univ Calif Riverside, Dept Elect & Comp Engn, Nanodevice Lab, Mat Sci & Engn Program, Riverside, CA 92521 USA
[2] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA
[3] Univ Georgia, Dept Chem, Athens, GA 30602 USA
[4] Polish Acad Sci, Ctr Terahertz Res & Applicat, Inst High Pressure Phys, PL-01142 Warsaw, Poland
[5] Ultra Quantum Inc, Huntsville, AL 35758 USA
基金
美国国家科学基金会;
关键词
DEFECT FORMATION; RADIATION; MOSFETS;
D O I
10.1039/c9nr01614g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We demonstrate that charge-density-wave devices with quasi-two-dimensional 1T-TaS2 channels show remarkable immunity to bombardment with 1.8 MeV protons to a fluence of at least 10(14) H(+)cm(-2). The current-voltage characteristics of these devices do not change as a result of proton irradiation, in striking contrast to most conventional semiconductor devices or other two-dimensional devices. Only negligible changes are found in the low-frequency noise spectra. The radiation immunity of these all-metallic charge-density-wave devices is attributed to the quasi-2D nature of the electron transport in the nanoscale-thickness channel, high concentration of charge carriers in the utilized charge-density-wave phases, and two-dimensional device design. Such devices, capable of operating over a wide temperature range, can constitute a crucial segment of future electronics for space, particle accelerator and other radiation environments.
引用
收藏
页码:8380 / 8386
页数:7
相关论文
共 50 条
  • [1] Charge-density-wave and superconductivity in the two-dimensional Little model
    Cheng, M
    Su, WP
    SYNTHETIC METALS, 2004, 141 (1-2) : 39 - 42
  • [2] Two-Dimensional Oscillatory Neural Network Based on Room-Temperature Charge-Density-Wave Devices
    Khitun, Alexander
    Liu, Guanxiong
    Balandin, Alexander A.
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2017, 16 (05) : 860 - 867
  • [3] Unidirectional charge-density-wave sliding in two-dimensional rare-earth tritellurides
    Sinchenko, A. A.
    Lejay, P.
    Leynaud, O.
    Monceau, P.
    SOLID STATE COMMUNICATIONS, 2014, 188 : 67 - 70
  • [4] Tuning Molecular Superlattice by Charge-Density-Wave Patterns in Two-Dimensional Monolayer Crystals
    Zhang, Quanzhen
    Huang, Zeping
    Hou, Yanhui
    Yuan, Peiwen
    Xu, Ziqiang
    Yang, Han
    Song, Xuan
    Chen, Yaoyao
    Yang, Huixia
    Zhang, Teng
    Liu, Liwei
    Gao, Hong-Jun
    Wang, Yeliang
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (14): : 3545 - 3551
  • [5] Charge-density-wave pseudogap and two-dimensional superconductivity within strong-coupling description
    Cebula, A
    Zielinski, J
    Mierzejewski, M
    JOURNAL OF SUPERCONDUCTIVITY, 2001, 14 (01): : 175 - 179
  • [6] Charge-Density-Wave Pseudogap and Two-Dimensional Superconductivity Within Strong-Coupling Description
    Anna Cebula
    Janusz Zieliński
    Marcin Mierzejewski
    Journal of Superconductivity, 2001, 14 : 175 - 179
  • [7] DENSITY-FUNCTIONAL THEORY OF A TWO-DIMENSIONAL CHARGE-DENSITY-WAVE STATE IN A STRONG MAGNETIC-FIELD
    WANG, CS
    GREMPEL, DR
    PRANGE, RE
    PHYSICAL REVIEW B, 1983, 28 (08): : 4284 - 4287
  • [8] d-wave pairing in the doped static charge-density-wave state on a two-dimensional square lattice
    Onozawa, M
    Fukumoto, Y
    Oguchi, A
    Mizuno, Y
    PHYSICAL REVIEW B, 2000, 62 (14): : 9648 - 9653
  • [9] Electrical Gating of the Charge-Density-Wave Phases in Two-Dimensional h-BN/1T-TaS2 Devices
    Taheri, Maedeh
    Brown, Jonas
    Rehman, Adil
    Sesing, Nicholas
    Kargar, Fariborz
    Salguero, Tina T.
    Rumyantsev, Sergey
    Balandin, Alexander A. .
    ACS NANO, 2022, 16 (11) : 18968 - 18977
  • [10] INFLUENCE OF IRRADIATION DEFECTS ON CHARGE-DENSITY-WAVE SYSTEMS
    MUTKA, H
    PHASE TRANSITIONS, 1988, 11 (1-4) : 221 - 239