A perturbation view of level-set methods for convex optimization

被引:1
|
作者
Estrin, Ron [1 ]
Friedlander, Michael P. [2 ,3 ]
机构
[1] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
[2] Univ British Columbia, Dept Comp Sci, Vancouver, BC V6R 1Y8, Canada
[3] Univ British Columbia, Dept Math, Vancouver, BC V6R 1Y8, Canada
关键词
Convex analysis; Duality; Level-set methods; ATOMIC DECOMPOSITION; RECOVERY;
D O I
10.1007/s11590-020-01609-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Level-set methods for convex optimization are predicated on the idea that certain problems can be parameterized so that their solutions can be recovered as the limiting process of a root-finding procedure. This idea emerges time and again across a range of algorithms for convex problems. Here we demonstrate that strong duality is a necessary condition for the level-set approach to succeed. In the absence of strong duality, the level-set method identifies epsilon-infeasible points that do not converge to a feasible point as epsilon tends to zero. The level-set approach is also used as a proof technique for establishing sufficient conditions for strong duality that are different from Slater's constraint qualification.
引用
收藏
页码:1989 / 2006
页数:18
相关论文
共 50 条
  • [41] A temperature-robust level-set approach for eigenfrequency optimization
    Matteo Pozzi
    Giacomo Bonaccorsi
    Francesco Braghin
    Structural and Multidisciplinary Optimization, 2023, 66
  • [42] A regularization scheme for explicit level-set XFEM topology optimization
    Markus J. Geiss
    Jorge L. Barrera
    Narasimha Boddeti
    Kurt Maute
    Frontiers of Mechanical Engineering, 2019, 14 : 153 - 170
  • [43] Identification of contact regions in semiconductor transistors by level-set methods
    Fang, WF
    Ito, K
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 159 (02) : 399 - 410
  • [44] Analysis of partial electrocoalescence by Level-Set and finite element methods
    Vivacqua, V.
    Ghadiri, M.
    Abdullah, A. M.
    Hassanpour, A.
    Al-Marri, M. J.
    Azzopardi, B.
    Hewakandamby, B.
    Kermani, B.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2016, 114 : 180 - 189
  • [45] Binary Tomography Reconstruction with Limited-Data by a Convex Level-Set Method
    Ali, Haytham A.
    Kudo, Hiroyuki
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 3741 - 3756
  • [46] A level-set method for vibration and multiple loads structural optimization
    Allaire, G
    Jouve, F
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (30-33) : 3269 - 3290
  • [47] Structural optimization using sensitivity analysis and a level-set method
    Allaire, G
    Jouve, F
    Toader, AM
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 194 (01) : 363 - 393
  • [48] Level-set image processing methods in medical image segmentation
    Maciejewski, Marcin
    Surtel, Wojciech
    Maciejewska, Barbara
    Malecka-Massalska, Teresa
    BIO-ALGORITHMS AND MED-SYSTEMS, 2015, 11 (01) : 47 - 51
  • [49] A temperature-robust level-set approach for eigenfrequency optimization
    Pozzi, Matteo
    Bonaccorsi, Giacomo
    Braghin, Francesco
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2023, 66 (08)
  • [50] A discrete level-set topology optimization code written in Matlab
    Vivien J. Challis
    Structural and Multidisciplinary Optimization, 2010, 41 : 453 - 464