A perturbation view of level-set methods for convex optimization

被引:1
|
作者
Estrin, Ron [1 ]
Friedlander, Michael P. [2 ,3 ]
机构
[1] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
[2] Univ British Columbia, Dept Comp Sci, Vancouver, BC V6R 1Y8, Canada
[3] Univ British Columbia, Dept Math, Vancouver, BC V6R 1Y8, Canada
关键词
Convex analysis; Duality; Level-set methods; ATOMIC DECOMPOSITION; RECOVERY;
D O I
10.1007/s11590-020-01609-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Level-set methods for convex optimization are predicated on the idea that certain problems can be parameterized so that their solutions can be recovered as the limiting process of a root-finding procedure. This idea emerges time and again across a range of algorithms for convex problems. Here we demonstrate that strong duality is a necessary condition for the level-set approach to succeed. In the absence of strong duality, the level-set method identifies epsilon-infeasible points that do not converge to a feasible point as epsilon tends to zero. The level-set approach is also used as a proof technique for establishing sufficient conditions for strong duality that are different from Slater's constraint qualification.
引用
收藏
页码:1989 / 2006
页数:18
相关论文
共 50 条
  • [21] A Parallel Level-Set Based Method for Topology Optimization
    Wu, Tao
    Xu, Hao
    Hu, Qiangwen
    Zhao, Yansong
    Peng, Ying
    Chen, Lvjie
    Fu, Yu
    PROCEEDINGS OF THE 2014 IEEE 18TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2014, : 505 - 509
  • [22] Adaptive immersed isogeometric level-set topology optimization
    Schmidt, Mathias R.
    Noel, Lise
    Wunsch, Nils
    Doble, Keenan
    Evans, John A.
    Maute, Kurt
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2025, 68 (01)
  • [23] Stochastic topology optimization based on level-set method
    Hidaka, Yuki
    Sato, Takahiro
    Watanabe, Kota
    Igarashi, Hajime
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2014, 33 (06) : 1904 - 1919
  • [24] On multiple level-set regularization methods for inverse problems
    DeCezaro, A.
    Leitao, A.
    Tai, X-C
    INVERSE PROBLEMS, 2009, 25 (03)
  • [25] Combined state and parameter estimation in level-set methods
    Yu, Hans
    Juniper, Matthew R.
    Magri, Luca
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 399
  • [26] A review of level-set methods and some recent applications
    Gibou, Frederic
    Fedkiw, Ronald
    Osher, Stanley
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 353 : 82 - 109
  • [27] Stochastic Homogenization of Level-Set Convex Hamilton-Jacobi Equations
    Armstrong, Scott N.
    Souganidis, Panagiotis E.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (15) : 3420 - 3449
  • [28] Binary Tomography Reconstructions With Stochastic Level-Set Methods
    Wang, L.
    Sixou, B.
    Peyrin, F.
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (07) : 920 - 924
  • [29] A parametric level-set approach for topology optimization of flow domains
    Georg Pingen
    Matthias Waidmann
    Anton Evgrafov
    Kurt Maute
    Structural and Multidisciplinary Optimization, 2010, 41 : 117 - 131
  • [30] A study on topology optimization using the level-set function and BEM
    Matsumoto, T.
    Yamada, T.
    Shichi, S.
    Takahashi, T.
    BOUNDARY ELEMENTS AND OTHER MESH REDUCTION METHODS XXXIV, 2012, 53 : 123 - 133