A perturbation view of level-set methods for convex optimization

被引:1
|
作者
Estrin, Ron [1 ]
Friedlander, Michael P. [2 ,3 ]
机构
[1] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
[2] Univ British Columbia, Dept Comp Sci, Vancouver, BC V6R 1Y8, Canada
[3] Univ British Columbia, Dept Math, Vancouver, BC V6R 1Y8, Canada
关键词
Convex analysis; Duality; Level-set methods; ATOMIC DECOMPOSITION; RECOVERY;
D O I
10.1007/s11590-020-01609-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Level-set methods for convex optimization are predicated on the idea that certain problems can be parameterized so that their solutions can be recovered as the limiting process of a root-finding procedure. This idea emerges time and again across a range of algorithms for convex problems. Here we demonstrate that strong duality is a necessary condition for the level-set approach to succeed. In the absence of strong duality, the level-set method identifies epsilon-infeasible points that do not converge to a feasible point as epsilon tends to zero. The level-set approach is also used as a proof technique for establishing sufficient conditions for strong duality that are different from Slater's constraint qualification.
引用
收藏
页码:1989 / 2006
页数:18
相关论文
共 50 条
  • [1] A perturbation view of level-set methods for convex optimization
    Ron Estrin
    Michael P. Friedlander
    Optimization Letters, 2020, 14 : 1989 - 2006
  • [2] Level-set methods for convex optimization
    Aleksandr Y. Aravkin
    James V. Burke
    Dmitry Drusvyatskiy
    Michael P. Friedlander
    Scott Roy
    Mathematical Programming, 2019, 174 : 359 - 390
  • [3] Level-set methods for convex optimization
    Aravkin, Aleksandr Y.
    Burke, James V.
    Drusvyatskiy, Dmitry
    Friedlander, Michael P.
    Roy, Scott
    MATHEMATICAL PROGRAMMING, 2019, 174 (1-2) : 359 - 390
  • [4] Level-Set Methods for Finite-Sum Constrained Convex Optimization
    Lin, Qihang
    Ma, Runchao
    Yang, Tianbao
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [5] Topology optimization with the homogenization and the level-set methods
    Allaire, C
    NONLINEAR HOMOGENIZATION AND ITS APPLICATIONS TO COMPOSITES, POLYCRYSTALS AND SMART MATERIALS, 2004, 170 : 1 - 13
  • [6] A LEVEL-SET METHOD FOR CONVEX OPTIMIZATION WITH A FEASIBLE SOLUTION PATH
    Lin, Qihang
    Nadarajah, Selvaprabu
    Soheili, Negar
    SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (04) : 3290 - 3311
  • [7] Level-set methods for structural topology optimization: a review
    van Dijk, N. P.
    Maute, K.
    Langelaar, M.
    van Keulen, F.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2013, 48 (03) : 437 - 472
  • [8] Level-set methods for structural topology optimization: a review
    N. P. van Dijk
    K. Maute
    M. Langelaar
    F. van Keulen
    Structural and Multidisciplinary Optimization, 2013, 48 : 437 - 472
  • [9] A level-set method for shape optimization
    Allaire, G
    Jouve, F
    Toader, AM
    COMPTES RENDUS MATHEMATIQUE, 2002, 334 (12) : 1125 - 1130
  • [10] Metamorphosis based on the level-set methods
    Pan, Qing
    Xu, Guo-Liang
    Jisuanji Xuebao/Chinese Journal of Computers, 2009, 32 (02): : 213 - 220