Boosting Functional Regression Models with FDboost

被引:19
|
作者
Brockhaus, Sarah [1 ]
Ruegamer, David [1 ]
Greven, Sonja [1 ]
机构
[1] Ludwig Maximilans Univ Munchen, Munich, Germany
来源
JOURNAL OF STATISTICAL SOFTWARE | 2020年 / 94卷 / 10期
关键词
functional data analysis; function-on-function regression; function-on-scalar regression; gradient boosting; model-based boosting; scalar-on-function regression; ON-FUNCTION REGRESSION; VARIABLE SELECTION; ADDITIVE-MODELS; R PACKAGE; LOCATION; SCALE;
D O I
10.18637/jss.v094.i10
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The R add-on package FDboost is a flexible toolbox for the estimation of functional regression models by model-based boosting. It provides the possibility to fit regression models for scalar and functional response with effects of scalar as well as functional covariates, i.e., scalar-on-function, function-on-scalar and function-on-function regression models. In addition to mean regression, quantile regression models as well as generalized additive models for location scale and shape can be fitted with FDboost. Furthermore, boosting can be used in high-dimensional data settings with more covariates than observations. We provide a hands-on tutorial on model fitting and tuning, including the visualization of results. The methods for scalar-on-function regression are illustrated with spectrometric data of fossil fuels and those for functional response regression with a data set including bioelectrical signals for emotional episodes.
引用
收藏
页码:1 / 50
页数:50
相关论文
共 50 条
  • [41] Variable selection in functional regression models: A review
    Aneiros, German
    Novo, Silvia
    Vieu, Philippe
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 188
  • [42] Application of Gradient Boosting in the Design of Fuzzy Rule-Based Regression Models
    Zhang, Huimin
    Hu, Xingchen
    Zhu, Xiubin
    Liu, Xinwang
    Pedrycz, Witold
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 5621 - 5632
  • [43] Functional regression models with functional response: a new approach and a comparative study
    Febrero-Bande, Manuel
    Oviedo-de la Fuente, Manuel
    Darbalaei, Mohammad
    Amini, Morteza
    COMPUTATIONAL STATISTICS, 2024,
  • [44] Gaussian Process Models for Non Parametric Functional Regression with Functional Responses
    Tang, Xingyu
    Hong, Zhaoping
    Hu, Yuao
    Lian, Heng
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (16) : 3428 - 3445
  • [45] Functional prediction through averaging estimated functional linear regression models
    Zhang, Xinyu
    Chiou, Jeng-Min
    Ma, Yanyuan
    BIOMETRIKA, 2018, 105 (04) : 945 - 962
  • [46] Estimation and inference for functional linear regression models with partially varying regression coefficients
    Cao, Guanqun
    Wang, Shuoyang
    Wang, Lily
    STAT, 2020, 9 (01):
  • [47] Elastic Handling of Predictor Phase in Functional Regression Models
    Ahn, Kyungmin
    Tucker, J. Derek
    Wu, Wei
    Srivastava, Anuj
    PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 437 - 444
  • [48] Varying-coefficient functional linear regression models
    Cardot, Herve
    Sarda, Pascal
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (20) : 3186 - 3203
  • [49] Varying coefficient partially functional linear regression models
    Qing-Yan Peng
    Jian-Jun Zhou
    Nian-Sheng Tang
    Statistical Papers, 2016, 57 : 827 - 841
  • [50] Stream Temperature Modeling Using Functional Regression Models
    Boudreault, Jeremie
    Bergeron, Normand E.
    St-Hilaire, Andre
    Chebana, Fateh
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2019, 55 (06): : 1382 - 1400