Boosting Functional Regression Models with FDboost

被引:19
|
作者
Brockhaus, Sarah [1 ]
Ruegamer, David [1 ]
Greven, Sonja [1 ]
机构
[1] Ludwig Maximilans Univ Munchen, Munich, Germany
来源
JOURNAL OF STATISTICAL SOFTWARE | 2020年 / 94卷 / 10期
关键词
functional data analysis; function-on-function regression; function-on-scalar regression; gradient boosting; model-based boosting; scalar-on-function regression; ON-FUNCTION REGRESSION; VARIABLE SELECTION; ADDITIVE-MODELS; R PACKAGE; LOCATION; SCALE;
D O I
10.18637/jss.v094.i10
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The R add-on package FDboost is a flexible toolbox for the estimation of functional regression models by model-based boosting. It provides the possibility to fit regression models for scalar and functional response with effects of scalar as well as functional covariates, i.e., scalar-on-function, function-on-scalar and function-on-function regression models. In addition to mean regression, quantile regression models as well as generalized additive models for location scale and shape can be fitted with FDboost. Furthermore, boosting can be used in high-dimensional data settings with more covariates than observations. We provide a hands-on tutorial on model fitting and tuning, including the visualization of results. The methods for scalar-on-function regression are illustrated with spectrometric data of fossil fuels and those for functional response regression with a data set including bioelectrical signals for emotional episodes.
引用
收藏
页码:1 / 50
页数:50
相关论文
共 50 条
  • [31] Variable selection in functional additive regression models
    Febrero-Bande, Manuel
    Gonzalez-Manteiga, Wenceslao
    Oviedo de la Fuente, Manuel
    COMPUTATIONAL STATISTICS, 2019, 34 (02) : 469 - 487
  • [32] Robust estimation for functional quadratic regression models
    Boente G.
    Parada D.
    Computational Statistics and Data Analysis, 2023, 187
  • [33] Robust estimation for functional logistic regression models
    Boente, Graciela
    Valdora, Marina
    ELECTRONIC JOURNAL OF STATISTICS, 2025, 19 (01): : 921 - 955
  • [34] Bivariate splines for spatial functional regression models
    Guillas, Serge
    Lai, Ming-Jun
    JOURNAL OF NONPARAMETRIC STATISTICS, 2010, 22 (04) : 477 - 497
  • [35] Variable selection in functional additive regression models
    Manuel Febrero-Bande
    Wenceslao González-Manteiga
    Manuel Oviedo de la Fuente
    Computational Statistics, 2019, 34 : 469 - 487
  • [36] Functional coefficient regression models with time trend
    Liang, Zhongwen
    Li, Qi
    JOURNAL OF ECONOMETRICS, 2012, 170 (01) : 15 - 31
  • [37] Correction: CLT in functional linear regression models
    Hervé Cardot
    André Mas
    Pascal Sarda
    Probability Theory and Related Fields, 2023, 187 : 519 - 522
  • [38] Continuously additive models for nonlinear functional regression
    Mueller, Hans-Georg
    Wu, Yichao
    Yao, Fang
    BIOMETRIKA, 2013, 100 (03) : 607 - 622
  • [39] Simultaneous confidence bands for functional regression models
    Chang, Chung
    Lin, Xuejing
    Ogden, R. Todd
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2017, 188 : 67 - 81
  • [40] Variable selection in Functional Additive Regression Models
    Febrero-Bande, Manuel
    Gonzalez-Manteiga, Wenceslao
    Oviedo de la Fuente, Manuel
    FUNCTIONAL STATISTICS AND RELATED FIELDS, 2017, : 113 - 122