Optimal control of elliptic obstacle problems with mixed boundary conditions

被引:2
|
作者
Peng, Zijia [1 ]
Huang, Sheng
Chai, Dailing
机构
[1] Guangxi Univ Nationalities, Guangxi Key Lab Univ Optimizat Control & Engn Calc, Nanning, Guangxi, Peoples R China
关键词
Variational inequality; optimal control; optimality conditions; boundary optimal control; obstacle problems; DISTRIBUTED CONTROL;
D O I
10.1080/02331934.2022.2157679
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study optimal control of an elliptic obstacle problem with mixed boundary conditions whose weak formulation is a nonlinear variational inequality. We put the control on both the boundary and obstacles. Existence of optimal solutions is proved and the necessary conditions of optimality are derived by the Lagrange multiplier rule and approximation techniques.
引用
收藏
页码:1397 / 1416
页数:20
相关论文
共 50 条
  • [1] Some optimality conditions of quasilinear elliptic obstacle optimal control problems
    Ye, Yuquan
    Chan, Chi Kin
    Leung, B. P. K.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (02) : 1757 - 1771
  • [2] Optimal control and approximation for elliptic bilateral obstacle problems
    Liu, Jinjie
    Yang, Xinmin
    Zeng, Shengda
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 102
  • [3] OBSTACLE PROBLEMS FOR DEGENERATE ELLIPTIC EQUATIONS WITH NONHOMOGENEOUS NONLINEAR BOUNDARY CONDITIONS
    Andreu, Fuensanta
    Igbida, Noureddine
    Mazon, Jose M.
    Toledo, Julian
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2008, 18 (11): : 1869 - 1893
  • [4] Regularity of solutions of obstacle problems for elliptic equations with oblique boundary conditions
    Lieberman, GM
    PACIFIC JOURNAL OF MATHEMATICS, 2001, 201 (02) : 389 - 419
  • [5] Elliptic boundary value problems with nonsmooth potential and mixed boundary conditions
    Costea, Nicusor
    Firoiu, Irinel
    Preda, Felician Dumitru
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (09) : 1201 - 1213
  • [6] Systems of fully nonlinear degenerate elliptic obstacle problems with Dirichlet boundary conditions
    Andronicou, Savvas
    Milakis, Emmanouil
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (06) : 2861 - 2901
  • [7] Systems of fully nonlinear degenerate elliptic obstacle problems with Dirichlet boundary conditions
    Savvas Andronicou
    Emmanouil Milakis
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 2861 - 2901
  • [8] HOMOGENIZATION OF ELLIPTIC PROBLEMS IN PERFORATED DOMAINS WITH MIXED BOUNDARY CONDITIONS
    Cioranescu, Doina
    Hammouda, A. Ould
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 53 (5-6): : 389 - 406
  • [9] Sharp estimates for solutions to elliptic problems with mixed boundary conditions
    Alvino, A.
    Chiacchio, F.
    Nitsch, C.
    Trombetti, C.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 152 : 251 - 261
  • [10] Mixed virtual element methods for elliptic optimal control problems with boundary observations in L 2 (Γ)
    Yang, Minghui
    Zhou, Zhaojie
    APPLIED NUMERICAL MATHEMATICS, 2024, 203 : 97 - 112