Optimal control of elliptic obstacle problems with mixed boundary conditions

被引:2
|
作者
Peng, Zijia [1 ]
Huang, Sheng
Chai, Dailing
机构
[1] Guangxi Univ Nationalities, Guangxi Key Lab Univ Optimizat Control & Engn Calc, Nanning, Guangxi, Peoples R China
关键词
Variational inequality; optimal control; optimality conditions; boundary optimal control; obstacle problems; DISTRIBUTED CONTROL;
D O I
10.1080/02331934.2022.2157679
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study optimal control of an elliptic obstacle problem with mixed boundary conditions whose weak formulation is a nonlinear variational inequality. We put the control on both the boundary and obstacles. Existence of optimal solutions is proved and the necessary conditions of optimality are derived by the Lagrange multiplier rule and approximation techniques.
引用
收藏
页码:1397 / 1416
页数:20
相关论文
共 50 条
  • [31] Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions
    Colorado, E
    Peral, I
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 199 (02) : 468 - 507
  • [32] Integral equation methods for elliptic problems with boundary conditions of mixed type
    Helsing, Johan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (23) : 8892 - 8907
  • [33] Boundary concentrated finite elements for optimal boundary control problems of elliptic PDEs
    Sven Beuchler
    Clemens Pechstein
    Daniel Wachsmuth
    Computational Optimization and Applications, 2012, 51 : 883 - 908
  • [34] Boundary concentrated finite elements for optimal boundary control problems of elliptic PDEs
    Beuchler, Sven
    Pechstein, Clemens
    Wachsmuth, Daniel
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 51 (02) : 883 - 908
  • [35] A class of elliptic mixed boundary value problems with (p, q)-Laplacian: existence, comparison and optimal control
    Zeng, Shengda
    Migorski, Stanislaw
    Tarzia, Domingo A.
    Zou, Lang
    Van Thien Nguyen
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (04):
  • [36] A class of elliptic mixed boundary value problems with (p, q)-Laplacian: existence, comparison and optimal control
    Shengda Zeng
    Stanisław Migórski
    Domingo A. Tarzia
    Lang Zou
    Van Thien Nguyen
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [37] OPTIMAL BOUNDS IN SEMILINEAR ELLIPTIC PROBLEMS WITH NONLINEAR BOUNDARY-CONDITIONS
    SPERB, RP
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1993, 44 (04): : 639 - 653
  • [38] Continuity regularity of optimal control solutions to distributed and boundary semilinear elliptic optimal control problems with mixed pointwise control-state constraints
    Nhu, V. H.
    Tuan, N. Q.
    Giang, N. B.
    Huong, N. T. T.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 512 (01)
  • [39] ELLIPTIC FREE BOUNDARY TRANSMISSION, THE BERNOULLI AND THE OBSTACLE PROBLEMS
    Ton, Bui An
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2010, 23 (7-8) : 685 - 702
  • [40] DOUBLE PHASE OBSTACLE PROBLEMS WITH MULTIVALUED CONVECTION AND MIXED BOUNDARY VALUE CONDITIONS
    Zeng, Shengda
    Radulescu, Vicentiu D.
    Winkert, Patrick
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (02): : 999 - 1023