OBSTACLE PROBLEMS FOR DEGENERATE ELLIPTIC EQUATIONS WITH NONHOMOGENEOUS NONLINEAR BOUNDARY CONDITIONS

被引:7
|
作者
Andreu, Fuensanta [1 ]
Igbida, Noureddine [2 ]
Mazon, Jose M. [1 ]
Toledo, Julian [1 ]
机构
[1] Univ Valencia, E-46100 Burjassot, Spain
[2] Univ Picardie Jules Verne, CNRS, LAMFA, UMR 6140, F-80038 Amiens, France
来源
关键词
Obstacle problem; degenerate elliptic equation; p-Laplacian operator; nonlinear boundary conditions;
D O I
10.1142/S0218202508003224
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the questions of existence and uniqueness of solutions for equations of type -div a(x, Du)+ gamma(u) phi, posed in an open bounded subset. of RN, with nonlinear boundary conditions of the form a(x, Du) . eta + beta(u) psi. The nonlinear elliptic operator div a( x, Du) modeled on the p-Laplacian operator Delta(p)(u) = div(vertical bar Du vertical bar(p- 2) Du), with p > 1, gamma and beta maximal monotone graphs in R(2) such that 0 epsilon gamma(0) boolean AND beta(0), R not equal <(D(gamma))over bar> subset of D(beta) and the data phi epsilon L(1)(Omega) and psi epsilon L(1)(partial derivative Omega). Since D(gamma) not equal R, we are dealing with obstacle problems. For this kind of problems the existence of weak solution, in the usual sense, fails to be true for nonhomogeneous boundary conditions, so a new concept of solution has to be introduced.
引用
收藏
页码:1869 / 1893
页数:25
相关论文
共 50 条