Some new Hermite-Hadamard type inequalities for geometrically quasi-convex functions on co-ordinates

被引:5
|
作者
Guo, Xu-Yang [1 ]
Qi, Feng [2 ]
Xi, Bo-Yan [1 ]
机构
[1] Inner Mongolia Univ Nationalities, Coll Math, Tongliao City, Inner Mongolia, Peoples R China
[2] Tianjin Polytech Univ, Coll Sci, Dept Math, Tianjin 300160, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Geometrically quasi-convex function; Hermite-Hadamard type integral inequality; Holder inequality;
D O I
10.22436/jnsa.008.05.25
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, the authors introduce a new concept "geometrically quasi-convex function on co-ordinates" and establish some new Hermite-Hadamard type inequalities for geometrically quasi-convex functions on the co-ordinates. (C) 2015 All rights reserved.
引用
收藏
页码:740 / 749
页数:10
相关论文
共 50 条
  • [31] ON SOME INEQUALITIES OF HERMITE-HADAMARD TYPE FOR CONVEX FUNCTIONS
    Sarikaya, Mehmet Zeki
    Avci, Merve
    Kavurmaci, Havva
    ICMS: INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE, 2010, 1309 : 852 - +
  • [32] NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX
    Alomari, M.
    Darus, M.
    Dragomir, S. S.
    TAMKANG JOURNAL OF MATHEMATICS, 2010, 41 (04): : 353 - 359
  • [33] Hermite Hadamard type inequalities for extended s-convex functions on the co-ordinates in a rectangle
    Xi, Bo-Yan
    Hua, Ju
    Qi, Feng
    JOURNAL OF APPLIED ANALYSIS, 2014, 20 (01) : 29 - 39
  • [34] SOME INTEGRAL INEQUALITIES OF HERMITE-HADAMARD TYPE FOR s-GEOMETRICALLY CONVEX FUNCTIONS
    Yin, Hong-Ping
    Wang, Jing-Yu
    Qi, Feng
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 699 - 705
  • [35] Some new inequalities of the Hermite-Hadamard type for extended ((s(1), m(1))-(s(2), m(2)))-convex functions on co-ordinates
    Xi, Bo-Yan
    He, Chun-Ying
    Qi, Feng
    COGENT MATHEMATICS, 2016, 3
  • [36] GENERALIZED HERMITE-HADAMARD TYPE INEQUALITIES FOR DIFFERENTIABLE HARMONICALLY-CONVEX AND HARMONICALLY QUASI-CONVEX FUNCTIONS
    Latif, Muhammad Amer
    Hussain, Sabir
    Chu, Yu-Ming
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (02): : 755 - 766
  • [37] HERMITE-HADAMARD TYPE INEQUALITIES FOR GEOMETRICALLY r-CONVEX FUNCTIONS
    Xi, Bo-Yan
    Qi, Feng
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2014, 51 (04) : 530 - 546
  • [38] HERMITE-HADAMARD TYPE INEQUALITIES FOR OPERATOR GEOMETRICALLY CONVEX FUNCTIONS II
    Taghavi, A.
    Darvish, V
    Roushan, T. Azimi
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (01): : 115 - 125
  • [39] Some estimates on the Hermite-Hadamard inequality through quasi-convex functions
    Ion, Daniel Alexandru
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2007, 34 : 83 - 88
  • [40] INTEGRAL INEQUALITIES OF HERMITE - HADAMARD TYPE FOR ((alpha, m), log)-CONVEX FUNCTIONS ON CO-ORDINATES
    Xi, Bo-Yan
    Qi, Feng
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2015, 4 (02): : 73 - 92