Some new Hermite-Hadamard type inequalities for geometrically quasi-convex functions on co-ordinates

被引:5
|
作者
Guo, Xu-Yang [1 ]
Qi, Feng [2 ]
Xi, Bo-Yan [1 ]
机构
[1] Inner Mongolia Univ Nationalities, Coll Math, Tongliao City, Inner Mongolia, Peoples R China
[2] Tianjin Polytech Univ, Coll Sci, Dept Math, Tianjin 300160, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Geometrically quasi-convex function; Hermite-Hadamard type integral inequality; Holder inequality;
D O I
10.22436/jnsa.008.05.25
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, the authors introduce a new concept "geometrically quasi-convex function on co-ordinates" and establish some new Hermite-Hadamard type inequalities for geometrically quasi-convex functions on the co-ordinates. (C) 2015 All rights reserved.
引用
收藏
页码:740 / 749
页数:10
相关论文
共 50 条
  • [21] New Inequalities of Fejer and Hermite-Hadamard type Concerning Convex and Quasi-Convex Functions With Applications
    Latif, Muhammad Amer
    Dragomir, Sever Silvestru
    Obeidat, Sofian
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2021, 53 (02): : 1 - 17
  • [22] Some New Hermite-Hadamard Type Inequalities for Quasi-Convex Functions via Fractional Integral Operator
    Set, Erhan
    Celik, Baris
    Akdemir, Ahmet Ocak
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES (ICANAS 2017), 2017, 1833
  • [23] Some new Hermite-Hadamard-type inequalities for strongly h-convex functions on co-ordinates
    Hong, Weizhi
    Xu, Yanran
    Ruan, Jianmiao
    Ma, Xinsheng
    OPEN MATHEMATICS, 2024, 22 (01):
  • [24] Hermite-Hadamard Type Inequalities For Quasi-Convex Functions Via New Fractional Conformable Integrals
    Set, Erhan
    Gozpinar, Abdurrahman
    Demirci, Filiz
    1ST INTERNATIONAL CONFERENCE ON MATHEMATICAL AND RELATED SCIENCES (ICMRS 2018), 2018, 1991
  • [25] Hermite-Hadamard Type Inequalities for (α, m)-Geometrically Convex Functions
    Onalan, Havva Kavurmaci
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [26] Hermite-Hadamard type inequalities for operator geometrically convex functions
    Taghavi, A.
    Darvish, V.
    Nazari, H. M.
    Dragomir, S. S.
    MONATSHEFTE FUR MATHEMATIK, 2016, 181 (01): : 187 - 203
  • [27] Weighted version of Hermite–Hadamard type inequalities for geometrically quasi-convex functions and their applications
    Sofian Obeidat
    Muhammad Amer Latif
    Journal of Inequalities and Applications, 2018
  • [28] HERMITE-HADAMARD TYPE INEQUALITIES FOR QUASI-CONVEX FUNCTIONS VIA KATUGAMPOLA FRACTIONAL INTEGRALS
    Set, Erhan
    Mumcu, Ilker
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2018, 16 (04): : 605 - 613
  • [29] SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE PARTIAL DERIVATIVES IN ABSOLUTE VALUE ARE PREINVEX ON THE CO-ORDINATES
    Latif, Muhammad Amer
    Dragomir, Sever S.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2013, 28 (03): : 257 - 270
  • [30] HERMITE-HADAMARD INTEGRAL INEQUALITIES FOR LOG-CONVEX INTERVAL-VALUED FUNCTIONS ON CO-ORDINATES
    Ali, M. A.
    Murtaza, G.
    Budak, H.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (02): : 456 - 468