Multilevel Monte Carlo method for parabolic stochastic partial differential equations

被引:39
|
作者
Barth, Andrea [1 ]
Lang, Annika [1 ]
Schwab, Christoph [1 ]
机构
[1] ETH, Seminar Angew Math, CH-8092 Zurich, Switzerland
基金
欧洲研究理事会;
关键词
Multilevel Monte Carlo; Stochastic partial differential equations; Stochastic Finite Element Methods; Stochastic parabolic equation; Multilevel approximations; CONVERGENCE; SCHEME;
D O I
10.1007/s10543-012-0401-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We analyze the convergence and complexity of multilevel Monte Carlo discretizations of a class of abstract stochastic, parabolic equations driven by square integrable martingales. We show under low regularity assumptions on the solution that the judicious combination of low order Galerkin discretizations in space and an Euler-Maruyama discretization in time yields mean square convergence of order one in space and of order 1/2 in time to the expected value of the mild solution. The complexity of the multilevel estimator is shown to scale log-linearly with respect to the corresponding work to generate a single path of the solution on the finest mesh, resp. of the corresponding deterministic parabolic problem on the finest mesh.
引用
收藏
页码:3 / 27
页数:25
相关论文
共 50 条
  • [31] Monte Carlo method for parabolic equations involving fractional Laplacian
    Jiao, Caiyu
    Li, Changpin
    MONTE CARLO METHODS AND APPLICATIONS, 2023, 29 (01): : 33 - 53
  • [32] Estimating the parameters of stochastic differential equations by Monte Carlo methods
    Hurn, AS
    Lindsay, KA
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1997, 43 (3-6) : 495 - 501
  • [33] UNBIASED MONTE CARLO ESTIMATE OF STOCHASTIC DIFFERENTIAL EQUATIONS EXPECTATIONS
    Doumbia, Mahamadou
    Oudjane, Nadia
    Warin, Xavier
    ESAIM-PROBABILITY AND STATISTICS, 2017, 21 : 56 - 87
  • [34] On quasi-Monte Carlo simulation of stochastic differential equations
    Hofmann, N
    Mathe, P
    MATHEMATICS OF COMPUTATION, 1997, 66 (218) : 573 - 589
  • [35] Some Tools and Results for Parabolic Stochastic Partial Differential Equations
    Mueller, Carl
    MINICOURSE ON STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS, 2009, 1962 : 111 - 144
  • [36] Central limit theorems for parabolic stochastic partial differential equations
    Chen, Le
    Khoshnevisan, Davar
    Nualart, David
    Pu, Fei
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (02): : 1052 - 1077
  • [37] DEGENERATE PARABOLIC STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS: QUASILINEAR CASE
    Debussche, Arnaud
    Hofmanova, Martina
    Vovelle, Julien
    ANNALS OF PROBABILITY, 2016, 44 (03): : 1916 - 1955
  • [38] NONUNIQUENESS FOR NONNEGATIVE SOLUTIONS OF PARABOLIC STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
    Burdzy, K.
    Mueller, C.
    Perkins, E. A.
    ILLINOIS JOURNAL OF MATHEMATICS, 2010, 54 (04) : 1481 - 1507
  • [39] Generalized solutions of linear parabolic stochastic partial differential equations
    Potthoff, J
    Vage, G
    Watanabe, H
    APPLIED MATHEMATICS AND OPTIMIZATION, 1998, 38 (01): : 95 - 107
  • [40] Large Deviations for Quasilinear Parabolic Stochastic Partial Differential Equations
    Dong, Zhao
    Zhang, Rangrang
    Zhang, Tusheng
    POTENTIAL ANALYSIS, 2020, 53 (01) : 183 - 202