Multilevel Monte Carlo method for parabolic stochastic partial differential equations

被引:39
|
作者
Barth, Andrea [1 ]
Lang, Annika [1 ]
Schwab, Christoph [1 ]
机构
[1] ETH, Seminar Angew Math, CH-8092 Zurich, Switzerland
基金
欧洲研究理事会;
关键词
Multilevel Monte Carlo; Stochastic partial differential equations; Stochastic Finite Element Methods; Stochastic parabolic equation; Multilevel approximations; CONVERGENCE; SCHEME;
D O I
10.1007/s10543-012-0401-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We analyze the convergence and complexity of multilevel Monte Carlo discretizations of a class of abstract stochastic, parabolic equations driven by square integrable martingales. We show under low regularity assumptions on the solution that the judicious combination of low order Galerkin discretizations in space and an Euler-Maruyama discretization in time yields mean square convergence of order one in space and of order 1/2 in time to the expected value of the mild solution. The complexity of the multilevel estimator is shown to scale log-linearly with respect to the corresponding work to generate a single path of the solution on the finest mesh, resp. of the corresponding deterministic parabolic problem on the finest mesh.
引用
收藏
页码:3 / 27
页数:25
相关论文
共 50 条
  • [21] Covariance structure of parabolic stochastic partial differential equations
    Lang A.
    Larsson S.
    Schwab C.
    Stochastic Partial Differential Equations: Analysis and Computations, 2013, 1 (2) : :351 - 364
  • [22] On the discretization in time of parabolic stochastic partial differential equations
    Printems, J
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (06): : 1055 - 1078
  • [23] Intermittence and nonlinear parabolic stochastic partial differential equations
    Foondun, Mohammud
    Khoshnevisan, Davar
    ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 548 - 568
  • [24] A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data
    Teckentrup, A. L.
    Jantsch, P.
    Webster, C. G.
    Gunzburger, M.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2015, 3 (01): : 1046 - 1074
  • [25] AN EXPANSION METHOD FOR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS
    GREEN, JW
    JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1953, 51 (03): : 127 - +
  • [27] A qualocation method for parabolic partial differential equations
    Pani, AK
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1999, 19 (03) : 473 - 495
  • [28] A regression-based Monte Carlo method to solve backward stochastic differential equations
    Gobet, E
    Lemor, JP
    Warin, X
    ANNALS OF APPLIED PROBABILITY, 2005, 15 (03): : 2172 - 2202
  • [29] A MICRO-MACRO ACCELERATION METHOD FOR THE MONTE CARLO SIMULATION OF STOCHASTIC DIFFERENTIAL EQUATIONS
    Debrabant, Kristian
    Samaey, Giovanni
    Zielinski, Przemyslaw
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (06) : 2745 - 2786
  • [30] A weak Galerkin method for nonlinear stochastic parabolic partial differential equations with additive noise
    Zhu, Hongze
    Zhou, Chenguang
    Sun, Nana
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (06): : 2321 - 2334