Preparation of activated carbon supported Fe-Al2O3 catalyst and its application for hydrogen production by catalytic methane decomposition

被引:65
|
作者
Jin, Lijun [1 ,2 ]
Si, Huanhuan [1 ]
Zhang, Jianbo [1 ]
Lin, Ping [1 ]
Hu, Zhiyuan [1 ]
Qiu, Bo [1 ]
Hu, Haoquan [1 ]
机构
[1] Dalian Univ Technol, Sch Chem Engn, Inst Coal Chem Engn, State Key Lab Fine Chem, Dalian 116024, Peoples R China
[2] E China Univ Sci & Technol, Minist Educ, Key Lab Coal Gasificat & Energy Chem Engn, Shanghai 200237, Peoples R China
关键词
Methane decomposition; Hydrogen; Activated carbon; Fe-Al2O3; catalyst; Mesopore; COAL-LIQUEFACTION RESIDUE; THERMOCATALYTIC DECOMPOSITION; OXIDE CATALYSTS; FLUIDIZED-BED; NI CATALYSTS; NANOFIBERS; REDUCTION; OXIDATION; REACTOR;
D O I
10.1016/j.ijhydene.2013.06.023
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Activated carbon (AC) supported Fe-Al2O3 catalysts were prepared by impregnation method and used for catalytic methane decomposition to hydrogen. The XRD and H-2-TPR results showed that ferric nitrate on AC support was directly reduced to Fe metal by the reducibility of carbon at 870 degrees C. The loading amount and Fe/Al2O3 weight ratio affect the textural properties and catalytic methane decomposition. The surface area and pore volume of the catalyst decrease with the loading of Fe and Al2O3. Mesopores with size of about 4.5 nm can be formed at the loading of 20-60% and promote the catalytic activity and stability. The mesopores formation is thought that Fe accelerates burning off of carbon wall and enlarging pore sizes during the pretreatment. When the Fe/Al2O3 ratio is 16/24 to 24/16 at the loading of 40%, the resultant catalysts show narrow mesopore distributions and relative high methane conversion. Al2O3 as the promoter can improve catalytic activity and shorten transitional period of AC supported Fe catalyst. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:10373 / 10380
页数:8
相关论文
共 50 条
  • [41] Thermocatalytic decomposition of methane for hydrogen production using activated carbon catalyst: Regeneration and characterization studies
    Abbas, Hazzim F.
    Daud, W. M. A. Wan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (19) : 8034 - 8045
  • [42] Hydrogen and carbon nanofibers synthesis by methane decomposition over Ni-Pd/Al2O3 catalyst
    Bayat, Nima
    Rezaei, Mehran
    Meshkani, Fereshteh
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (12) : 5494 - 5503
  • [43] Methane decomposition over Ni-Fe/Al2O3 catalysts for production of COx-free hydrogen and carbon nanofiber
    Bayat, Nima
    Rezaei, Mehran
    Meshkani, Fereshteh
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (03) : 1574 - 1584
  • [44] Cobalt doping of α-Fe/Al2O3 catalysts for the production of hydrogen and high-quality carbon nanotubes by thermal decomposition of methane
    Torres, D.
    Pinilla, J. L.
    Suelves, I
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (38) : 19313 - 19323
  • [45] Preparation of Fe-Al Hollow Nano-spherical Catalyst and its Application in Catalytic Cracking of Ethane for Carbon Nanotube Production
    Liu Bei
    Wang Taoxiang
    Li Kang
    Sun Hongman
    Wang Youhe
    Yan Zifeng
    China Petroleum Processing & Petrochemical Technology, 2024, 26 (04) : 39 - 48
  • [46] CO-, Cu- and Fe-Doped Ni/Al2O3 Catalysts for the Catalytic Decomposition of Methane into Hydrogen and Carbon Nanofibers
    Torres, Daniel
    Luis Pinilla, Jose
    Suelves, Isabel
    CATALYSTS, 2018, 8 (08)
  • [47] NiFe/Al2O3/Fe-frame catalyst for COx-free hydrogen evolution from catalytic decomposition of methane: Performance and kinetics
    Liu, Qiang
    Wu, Pan
    He, Jian
    Jiang, Wei
    Liu, Changjun
    CHEMICAL ENGINEERING JOURNAL, 2022, 436
  • [48] Synthesis of Ni and Ni-Cu supported on carbon nanotubes for hydrogen and carbon production by catalytic decomposition of methane
    Shen, Yi
    Lua, Aik Chong
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 164 : 61 - 69
  • [49] Effect of Ce and Co Addition to Fe/Al2O3 for Catalytic Methane Decomposition
    Al-Fatesh, Ahmed Sadeq
    Amin, Ashraf
    Ibrahim, Ahmed Aidid
    Khan, Wasim Ullah
    Soliman, Mostafa Aly
    AL-Otaibi, Raja Lafi
    Fakeeha, Anis Hamza
    CATALYSTS, 2016, 6 (03):
  • [50] Hydrogen production by catalytic decomposition of methane using a Fe-based catalyst in a fluidized bed reactor
    D.Torres
    S.deLlobet
    J.L.Pinilla
    M.J.Lzaro
    I.Suelves
    R.Moliner
    Journal of Natural Gas Chemistry, 2012, 21 (04) : 367 - 373