Preparation of activated carbon supported Fe-Al2O3 catalyst and its application for hydrogen production by catalytic methane decomposition

被引:65
|
作者
Jin, Lijun [1 ,2 ]
Si, Huanhuan [1 ]
Zhang, Jianbo [1 ]
Lin, Ping [1 ]
Hu, Zhiyuan [1 ]
Qiu, Bo [1 ]
Hu, Haoquan [1 ]
机构
[1] Dalian Univ Technol, Sch Chem Engn, Inst Coal Chem Engn, State Key Lab Fine Chem, Dalian 116024, Peoples R China
[2] E China Univ Sci & Technol, Minist Educ, Key Lab Coal Gasificat & Energy Chem Engn, Shanghai 200237, Peoples R China
关键词
Methane decomposition; Hydrogen; Activated carbon; Fe-Al2O3; catalyst; Mesopore; COAL-LIQUEFACTION RESIDUE; THERMOCATALYTIC DECOMPOSITION; OXIDE CATALYSTS; FLUIDIZED-BED; NI CATALYSTS; NANOFIBERS; REDUCTION; OXIDATION; REACTOR;
D O I
10.1016/j.ijhydene.2013.06.023
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Activated carbon (AC) supported Fe-Al2O3 catalysts were prepared by impregnation method and used for catalytic methane decomposition to hydrogen. The XRD and H-2-TPR results showed that ferric nitrate on AC support was directly reduced to Fe metal by the reducibility of carbon at 870 degrees C. The loading amount and Fe/Al2O3 weight ratio affect the textural properties and catalytic methane decomposition. The surface area and pore volume of the catalyst decrease with the loading of Fe and Al2O3. Mesopores with size of about 4.5 nm can be formed at the loading of 20-60% and promote the catalytic activity and stability. The mesopores formation is thought that Fe accelerates burning off of carbon wall and enlarging pore sizes during the pretreatment. When the Fe/Al2O3 ratio is 16/24 to 24/16 at the loading of 40%, the resultant catalysts show narrow mesopore distributions and relative high methane conversion. Al2O3 as the promoter can improve catalytic activity and shorten transitional period of AC supported Fe catalyst. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:10373 / 10380
页数:8
相关论文
共 50 条
  • [21] Preparation and evaluation of Co/Al2O3 catalysts in the production of hydrogen from thermo-catalytic decomposition of methane:: Influence of operating conditions on catalyst performance
    Nuernberg, Giselle B.
    Fajardo, Humberto V.
    Mezalira, Daniela Z.
    Casarin, Tamara J.
    Probst, Luiz F. D.
    Carreno, Neftalfli L. V.
    FUEL, 2008, 87 (8-9) : 1698 - 1704
  • [22] Crystal-facet effect of γ-Al2O3 on Fe-Al2O3 catalytic performance for the co-production of hydrogen and CNTs from catalytic reforming of toluene
    Zhang, Wenjie
    Zhao, Jing
    Wang, Linfeng
    Liu, Guofu
    Shen, Dekui
    Zhang, Huiyan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 58 : 1466 - 1477
  • [23] Theoretical study of the mechanism of hydrogen production by catalytic methane decomposition on the carbon black catalyst
    Kedalo, Yegor M.
    Polynskaya, Yulia G.
    Matsokin, Nikita A.
    Knizhnik, Andrey A.
    Sinitsa, Alexander S.
    Potapkin, Boris V.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2024, 181
  • [24] Hydrogen production by catalytic decomposition of methane over carbon black catalyst at high temperatures
    Seung Chul Lee
    Hyung Jae Seo
    Gui Young Han
    Korean Journal of Chemical Engineering, 2013, 30 : 1716 - 1721
  • [25] Hydrogen production by catalytic decomposition of methane over carbon black catalyst at high temperatures
    Lee, Seung Chul
    Seo, Hyung Jae
    Han, Gui Young
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2013, 30 (09) : 1716 - 1721
  • [26] Fused Fe/Al2O3 catalysts for catalytic methane decomposition over a fluidized bed reactor: H2 production and carbon by products application
    Zhou, Lu
    Linga, Reddy Enakonda
    Basset, Jean
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [27] Formation of filamentous carbon and hydrogen by methane decomposition over Al2O3-supported Ni catalysts
    Kazuhisa Murata
    Megumu Inaba
    Masakazu Miki
    Tatsuaki Yamaguchi
    Reaction Kinetics and Catalysis Letters, 2005, 85 : 21 - 28
  • [28] Formation of filamentous carbon and hydrogen by methane decomposition over Al2O3-supported Ni catalysts
    Murata, K
    Inaba, M
    Miki, M
    Yamaguchi, T
    REACTION KINETICS AND CATALYSIS LETTERS, 2005, 85 (01): : 21 - 27
  • [29] EPR Characteristics of Activated Carbon for Hydrogen Production by the Thermo-Catalytic Decomposition of Methane
    Wieckowski, A. B.
    Najder-Kozdrowska, L.
    Rechnia, P.
    Malaika, A.
    Krzyzynska, B.
    Kozlowski, M.
    ACTA PHYSICA POLONICA A, 2016, 130 (03) : 701 - 704
  • [30] Catalytic Decomposition of Methane to Carbon Nanotubes and Hydrogen: The Effect of Metal Loading on the Activity of CoO-MoO/Al2O3 Catalyst
    Lee, Kim-Yang
    Yeoh, Wei-Ming
    Chai, Siang-Piao
    Ichikawa, Satoshi
    Mohamed, Abdul Rahman
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2013, 21 (02) : 158 - 170