A B-spline approach for empirical mode decompositions

被引:208
|
作者
Chen, QH
Huang, N
Riemenschneider, S
Xu, YS
机构
[1] Hubei Univ, Fac Math & Comp Sci, Wuhan 430062, Peoples R China
[2] NASA, Goddard Space Flight Ctr, Lab Hydrospher Proc, Oceans & Ice Branch, Greenbelt, MD 20771 USA
[3] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
[4] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[5] Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金; 美国国家航空航天局;
关键词
B-splines; nonlinear and nonstationary signals; empirical mode decompositions; Hilbert transforms;
D O I
10.1007/s10444-004-7614-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an alternative B-spline approach for empirical mode decompositions for nonlinear and nonstationary signals. Motivated by this new approach, we derive recursive formulas of the Hilbert transform of B-splines and discuss Euler splines as spline intrinsic mode functions in the decomposition. We also develop the Bedrosian identity for signals having vanishing moments. We present numerical implementations of the B-spline algorithm for an earthquake signal and compare the numerical performance of this approach with that given by the standard empirical mode decomposition. Finally, we discuss several open mathematical problems related to the empirical mode decomposition.
引用
收藏
页码:171 / 195
页数:25
相关论文
共 50 条
  • [1] A B-spline approach for empirical mode decompositions
    Qiuhui Chen
    Norden Huang
    Sherman Riemenschneider
    Yuesheng Xu
    Advances in Computational Mathematics, 2006, 24 : 171 - 195
  • [2] A B-spline approach for empirical mode decompositions (vol 24, pg 171, 2006)
    Chen, Qiuhui
    Huang, Norden
    Riemenschneider, Sherman
    Xu, Yuesheng
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2008, 29 (01) : 93 - 93
  • [3] B-spline based empirical mode decomposition
    Riemenschneider, Sherman
    Liu, Bao
    Xu, Yuesheng
    Huang, Norden E.
    HILBERT-HUANG TRANSFORM AND ITS APPLICATIONS, 2005, 5 : 27 - 55
  • [4] B-SPLINE ANALYTICAL REPRESENTATION OF THE MEAN ENVELOPE FOR EMPIRICAL MODE DECOMPOSITION
    Zheng, Tianxiang
    Yang, Lihua
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2010, 8 (02) : 175 - 195
  • [5] An Analytical Expression for Empirical Mode Decomposition Based on B-Spline Interpolation
    Yanli Yang
    Changyun Miao
    Jiahao Deng
    Circuits, Systems, and Signal Processing, 2013, 32 : 2899 - 2914
  • [6] An Analytical Expression for Empirical Mode Decomposition Based on B-Spline Interpolation
    Yang, Yanli
    Miao, Changyun
    Deng, Jiahao
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2013, 32 (06) : 2899 - 2914
  • [7] Extending Ball B-spline by B-spline
    Liu, Xinyue
    Wang, Xingce
    Wu, Zhongke
    Zhang, Dan
    Liu, Xiangyuan
    COMPUTER AIDED GEOMETRIC DESIGN, 2020, 82
  • [8] Extended cubic uniform B-spline and α-B-spline
    Institute of Computer Graphics and Image Processing, Department of Mathematics, Zhejiang University, Hangzhou 310027, China
    Zidonghua Xuebao, 2008, 8 (980-983):
  • [9] An improved empirical mode decomposition method based on the cubic trigonometric B-spline interpolation algorithm
    Li, Hongyi
    Qin, Xuyao
    Zhao, Di
    Chen, Jiaxin
    Wang, Pidong
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 332 : 406 - 419
  • [10] A quadratic trigonometric B-Spline as an alternate to cubic B-spline
    Samreen, Shamaila
    Sarfraz, Muhammad
    Mohamed, Abullah
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (12) : 11433 - 11443