On the one-sided exit problem for stable processes in random scenery

被引:5
|
作者
Castell, Fabienne [1 ]
Guillotin-Plantard, Nadine [2 ]
Pene, Francoise [3 ]
Schapira, Bruno [1 ]
机构
[1] Aix Marseille Univ, LATP, UMR CNRS 6632, Marseille, France
[2] Univ Lyon 1, Inst Camille Jordan, CNRS UMR 5208, F-69622 Villeurbanne, France
[3] Univ Brest, Univ Europeenne Bretagne, UMR CNRS 6205, Brest, France
关键词
Stable process; Random scenery; First passage time; One-sided barrier problem; One-sided exit problem; Survival exponent; RANDOM VELOCITY-FIELDS; LIMIT-THEOREM; RANDOM-WALKS; SUPERDIFFUSION;
D O I
10.1214/ECP.v18-2444
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the one-sided exit problem for stable Levy process in random scenery, that is the asymptotic behaviour for T large of the probability P[sup(t is an element of[0,T]) Delta(t) <= 1] where Delta(t) = integral(R) L-t(x) dW(x). Here W = {W(x); x is an element of R} is a two-sided standard real Brownian motion and {L-t(x); x is an element of R; t >= 0} the local time of a stable Levy process with index alpha is an element of (1, 2], independent from the process W. Our result confirms some physicists prediction by Redner and Majumdar.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [41] ONE-SIDED PROBLEM FOR A QUASILINEAR EQUATION OF HYPERBOLIC TYPE
    MAKSUDOV, FG
    ALIEV, AB
    TAKHIROV, DM
    DOKLADY AKADEMII NAUK SSSR, 1981, 258 (04): : 789 - 791
  • [42] Approximation and Nonapproximability for the One-Sided Scaffold Filling Problem
    Jiang, Haitao
    Ma, Jingjing
    Luan, Junfeng
    Zhu, Daming
    COMPUTING AND COMBINATORICS, 2015, 9198 : 251 - 263
  • [43] The one-sided minimal operator and the one-sided reverse Holder inequality
    CruzUribe, D
    Neugebauer, CJ
    Olesen, V
    STUDIA MATHEMATICA, 1995, 116 (03) : 255 - 270
  • [44] PARETO STABLE MATCHINGS UNDER ONE-SIDED MATROID CONSTRAINTS
    Kamiyama, Naoyuki
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (03) : 1431 - 1451
  • [45] Social welfare in one-sided matchings: Random priority and beyond
    Filos-Ratsikas, Aris
    Frederiksen, Søren Kristoffer Stiil
    Zhang, Jie
    Filos-Ratsikas, Aris (filosra@cs.au.dk), 1600, Springer Verlag (8768): : 1 - 12
  • [46] Testing one-sided hypotheses for the expectation of fuzzy random variables
    Wünsche, A
    SOFT METHODOLOGY AND RANDOM INFORMATION SYSTEMS, 2004, : 415 - 422
  • [47] On exit and ergodicity of the spectrally one-sided Levy process reflected at its infimum
    Pistorius, MR
    JOURNAL OF THEORETICAL PROBABILITY, 2004, 17 (01) : 183 - 220
  • [48] One-sided sharp thresholds for homology of random flag complexes
    Newman, Andrew
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (03):
  • [49] Social Welfare in One-Sided Matchings: Random Priority and Beyond
    Filos-Ratsikas, Aris
    Frederiksen, Soren Kristoffer Stiil
    Zhang, Jie
    ALGORITHMIC GAME THEORY, SAGT 2014, 2014, 8768 : 1 - 12
  • [50] Maximum Stable Matching with One-Sided Ties of Bounded Length
    Lam, Chi-Kit
    Plaxton, C. Gregory
    ALGORITHMIC GAME THEORY (SAGT 2019), 2019, 11801 : 343 - 356