On the one-sided exit problem for stable processes in random scenery

被引:5
|
作者
Castell, Fabienne [1 ]
Guillotin-Plantard, Nadine [2 ]
Pene, Francoise [3 ]
Schapira, Bruno [1 ]
机构
[1] Aix Marseille Univ, LATP, UMR CNRS 6632, Marseille, France
[2] Univ Lyon 1, Inst Camille Jordan, CNRS UMR 5208, F-69622 Villeurbanne, France
[3] Univ Brest, Univ Europeenne Bretagne, UMR CNRS 6205, Brest, France
关键词
Stable process; Random scenery; First passage time; One-sided barrier problem; One-sided exit problem; Survival exponent; RANDOM VELOCITY-FIELDS; LIMIT-THEOREM; RANDOM-WALKS; SUPERDIFFUSION;
D O I
10.1214/ECP.v18-2444
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the one-sided exit problem for stable Levy process in random scenery, that is the asymptotic behaviour for T large of the probability P[sup(t is an element of[0,T]) Delta(t) <= 1] where Delta(t) = integral(R) L-t(x) dW(x). Here W = {W(x); x is an element of R} is a two-sided standard real Brownian motion and {L-t(x); x is an element of R; t >= 0} the local time of a stable Levy process with index alpha is an element of (1, 2], independent from the process W. Our result confirms some physicists prediction by Redner and Majumdar.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [31] Some limsup results for increments of stable processes in random scenery
    Wei, Huang
    Journal of Zhejiang University: Science A, 2002, 3 (05): : 579 - 583
  • [32] ONE-SIDED BOUNDARY CROSSING FOR PROCESSES WITH INDEPENDENT INCREMENTS
    GREENWOOD, PE
    NOVIKOV, AA
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1987, 31 (02) : 221 - 232
  • [33] OPTIMAL STOPPING FOR LEVY PROCESSES WITH ONE-SIDED SOLUTIONS
    Mordecki, Ernesto
    Mishura, Yuliya
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (05) : 2553 - 2567
  • [34] One-sided convergence of continuous processes of stochastic approximation
    Komarov S.V.
    Krasulina T.P.
    Journal of Mathematical Sciences, 1999, 93 (3) : 379 - 384
  • [35] A one-sided many-to-many matching problem
    Okumura, Yasunori
    JOURNAL OF MATHEMATICAL ECONOMICS, 2017, 72 : 104 - 111
  • [36] On the inverse problem for generalized one-sided concept lattices
    Pócs, Jozef
    Pócsová, Jana
    Informatica (Slovenia), 2014, 38 (02): : 95 - 101
  • [37] On the Inverse Problem for Generalized One-Sided Concept Lattices
    Pocs, Jozef
    Pocsova, Jana
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2014, 38 (02): : 95 - 101
  • [38] On Approaching the One-Sided Exemplar Adjacency Number Problem
    Qingge, Letu
    Smith, Killian
    Jungst, Sean
    Zhu, Binhai
    BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2018, 2018, 10847 : 275 - 286
  • [39] Approaching the One-Sided Exemplar Adjacency Number Problem
    Qingge, Letu
    Smith, Killian
    Jungst, Sean
    Wang, Baihui
    Yang, Qing
    Zhu, Binhai
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 17 (06) : 1946 - 1954
  • [40] Solution of an open problem on cofaithful one-sided ideals
    van Wyk, Leon
    Ziembowski, Michal
    JOURNAL OF ALGEBRA, 2019, 536 : 229 - 241