On the one-sided exit problem for stable processes in random scenery

被引:5
|
作者
Castell, Fabienne [1 ]
Guillotin-Plantard, Nadine [2 ]
Pene, Francoise [3 ]
Schapira, Bruno [1 ]
机构
[1] Aix Marseille Univ, LATP, UMR CNRS 6632, Marseille, France
[2] Univ Lyon 1, Inst Camille Jordan, CNRS UMR 5208, F-69622 Villeurbanne, France
[3] Univ Brest, Univ Europeenne Bretagne, UMR CNRS 6205, Brest, France
关键词
Stable process; Random scenery; First passage time; One-sided barrier problem; One-sided exit problem; Survival exponent; RANDOM VELOCITY-FIELDS; LIMIT-THEOREM; RANDOM-WALKS; SUPERDIFFUSION;
D O I
10.1214/ECP.v18-2444
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the one-sided exit problem for stable Levy process in random scenery, that is the asymptotic behaviour for T large of the probability P[sup(t is an element of[0,T]) Delta(t) <= 1] where Delta(t) = integral(R) L-t(x) dW(x). Here W = {W(x); x is an element of R} is a two-sided standard real Brownian motion and {L-t(x); x is an element of R; t >= 0} the local time of a stable Levy process with index alpha is an element of (1, 2], independent from the process W. Our result confirms some physicists prediction by Redner and Majumdar.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [1] Universality of the asymptotics of the one-sided exit problem for integrated processes
    Aurzada, Frank
    Dereich, Steffen
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2013, 49 (01): : 236 - 251
  • [2] ON THE ONE-SIDED EXIT PROBLEM FOR FRACTIONAL BROWNIAN MOTION
    Aurzada, Frank
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 392 - 404
  • [3] Diffusion Processes with One-sided Selfsimilar Random Potentials
    Suzuki, Yuki
    Takahashi, Hiroshi
    Tamura, Yozo
    POTENTIAL ANALYSIS, 2024,
  • [5] One-sided Overview of the Problem
    Dietrich, Wulf
    DEUTSCHES ARZTEBLATT INTERNATIONAL, 2016, 113 (27-28): : 487 - 487
  • [6] One-sided random context grammars
    Meduna, Alexander
    Zemek, Petr
    ACTA INFORMATICA, 2011, 48 (03) : 149 - 163
  • [7] One-sided random context grammars
    Alexander Meduna
    Petr Zemek
    Acta Informatica, 2011, 48 : 149 - 163
  • [8] THE TANGENT APPROXIMATION TO ONE-SIDED BROWNIAN EXIT DENSITIES
    FEREBEE, B
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 61 (03): : 309 - 326
  • [9] SOME EXACT DISTRIBUTIONS OF A LAST ONE-SIDED EXIT TIME IN THE SIMPLE RANDOM-WALK
    CHAO, CC
    SLIVKA, J
    JOURNAL OF APPLIED PROBABILITY, 1986, 23 (02) : 332 - 340
  • [10] The One-Sided Isometric Extension Problem
    Hungerbuhler, Norbert
    Wasem, Micha
    RESULTS IN MATHEMATICS, 2017, 71 (3-4) : 749 - 781