Generalized Autoregressive Score Models in R: The GAS Package

被引:40
|
作者
Ardia, David [1 ,2 ]
Boudt, Kris [3 ,4 ,5 ]
Catania, Leopoldo [6 ,7 ]
机构
[1] Univ Neuchatel, Inst Financial Anal, Neuchatel, Switzerland
[2] HEC Montreal, Dept Decis Sci, Montreal, PQ, Canada
[3] Univ Ghent, Dept Econ, Ghent, Belgium
[4] Vrije Univ Brussel, Brussels, Belgium
[5] Vrije Univ Amsterdam, Amsterdam, Netherlands
[6] Aarhus BSS, Dept Econ & Business Econ, Aarhus, Denmark
[7] CREATES, Aarhus, Denmark
来源
JOURNAL OF STATISTICAL SOFTWARE | 2019年 / 88卷 / 06期
关键词
GAS; time series models; score models; dynamic conditional score; R software; FAT TAILS; DYNAMICS;
D O I
10.18637/jss.v088.i06
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents the R package GAS for the analysis of time series under the generalized autoregressive score (GAS) framework of Creal, Koopman, and Lucas (2013) and Harvey (2013). The distinctive feature of the GAS approach is the use of the score function as the driver of time-variation in the parameters of non-linear models. The GAS package provides functions to simulate univariate and multivariate GAS processes, to estimate the GAS parameters and to make time series forecasts. We illustrate the use of the GAS package with a detailed case study on estimating the time-varying conditional densities of financial asset returns.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [41] CARBayes: An R Package for Bayesian Spatial Modeling with Conditional Autoregressive Priors
    Lee, Duncan
    JOURNAL OF STATISTICAL SOFTWARE, 2013, 55 (13): : 1 - 24
  • [42] The R Package geepack for Generalized Estimating Equations
    Halekoh, U
    Hojsgaard, S
    Yan, J
    JOURNAL OF STATISTICAL SOFTWARE, 2006, 15 (02): : 1 - 11
  • [43] Stable Randomized Generalized Autoregressive Conditional Heteroskedastic Models
    Sampaio, Jhames M.
    Morettin, Pedro A.
    ECONOMETRICS AND STATISTICS, 2020, 15 : 67 - 83
  • [44] Variable selection in generalized random coefficient autoregressive models
    Zhao, Zhiwen
    Liu, Yangping
    Peng, Cuixin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [45] Generalized discrete autoregressive moving-average models
    Moeller, Tobias A.
    Weiss, Christian H.
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2020, 36 (04) : 641 - 659
  • [46] Multivariate ARMA models with generalized autoregressive linear innovation
    Francq, C
    Zakoyan, JM
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2000, 18 (02) : 231 - 260
  • [47] Generalized autoregressive moving average models with GARCH errors
    Zheng, Tingguo
    Xiao, Han
    Chen, Rong
    JOURNAL OF TIME SERIES ANALYSIS, 2022, 43 (01) : 125 - 146
  • [48] Generalized Poisson autoregressive models for time series of counts
    Chen, Cathy W. S.
    Lee, Sangyeol
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 99 : 51 - 67
  • [49] Transformed symmetric generalized autoregressive moving average models
    Gomes, Amanda S.
    Morettin, Pedro A.
    Cordeiro, Gauss M.
    Taddeo, Marcelo M.
    STATISTICS, 2018, 52 (03) : 643 - 664
  • [50] Spatial extension of generalized autoregressive conditional heteroskedasticity models
    Sato, Takaki
    Matsuda, Yasumasa
    SPATIAL ECONOMIC ANALYSIS, 2021, 16 (02) : 148 - 160